Topic
Noise (signal processing)
About: Noise (signal processing) is a research topic. Over the lifetime, 61013 publications have been published within this topic receiving 621165 citations.
Papers published on a yearly basis
Papers
More filters
20 Jun 2005
TL;DR: A new measure, the method noise, is proposed, to evaluate and compare the performance of digital image denoising methods, and a new algorithm, the nonlocal means (NL-means), based on a nonlocal averaging of all pixels in the image is proposed.
Abstract: We propose a new measure, the method noise, to evaluate and compare the performance of digital image denoising methods. We first compute and analyze this method noise for a wide class of denoising algorithms, namely the local smoothing filters. Second, we propose a new algorithm, the nonlocal means (NL-means), based on a nonlocal averaging of all pixels in the image. Finally, we present some experiments comparing the NL-means algorithm and the local smoothing filters.
6,804 citations
TL;DR: The effect of the added white noise is to provide a uniform reference frame in the time–frequency space; therefore, the added noise collates the portion of the signal of comparable scale in one IMF.
Abstract: A new Ensemble Empirical Mode Decomposition (EEMD) is presented. This new approach consists of sifting an ensemble of white noise-added signal (data) and treats the mean as the final true result. Finite, not infinitesimal, amplitude white noise is necessary to force the ensemble to exhaust all possible solutions in the sifting process, thus making the different scale signals to collate in the proper intrinsic mode functions (IMF) dictated by the dyadic filter banks. As EEMD is a time–space analysis method, the added white noise is averaged out with sufficient number of trials; the only persistent part that survives the averaging process is the component of the signal (original data), which is then treated as the true and more physical meaningful answer. The effect of the added white noise is to provide a uniform reference frame in the time–frequency space; therefore, the added noise collates the portion of the signal of comparable scale in one IMF. With this ensemble mean, one can separate scales naturall...
6,437 citations
TL;DR: Although discussed in the context of direction-of-arrival estimation, ESPRIT can be applied to a wide variety of problems including accurate detection and estimation of sinusoids in noise.
Abstract: An approach to the general problem of signal parameter estimation is described. The algorithm differs from its predecessor in that a total least-squares rather than a standard least-squares criterion is used. Although discussed in the context of direction-of-arrival estimation, ESPRIT can be applied to a wide variety of problems including accurate detection and estimation of sinusoids in noise. It exploits an underlying rotational invariance among signal subspaces induced by an array of sensors with a translational invariance structure. The technique, when applicable, manifests significant performance and computational advantages over previous algorithms such as MEM, Capon's MLM, and MUSIC. >
6,273 citations
TL;DR: This work proposes an entirely non-recursive variational mode decomposition model, where the modes are extracted concurrently and is a generalization of the classic Wiener filter into multiple, adaptive bands.
Abstract: During the late 1990s, Huang introduced the algorithm called Empirical Mode Decomposition, which is widely used today to recursively decompose a signal into different modes of unknown but separate spectral bands. EMD is known for limitations like sensitivity to noise and sampling. These limitations could only partially be addressed by more mathematical attempts to this decomposition problem, like synchrosqueezing, empirical wavelets or recursive variational decomposition. Here, we propose an entirely non-recursive variational mode decomposition model, where the modes are extracted concurrently. The model looks for an ensemble of modes and their respective center frequencies, such that the modes collectively reproduce the input signal, while each being smooth after demodulation into baseband. In Fourier domain, this corresponds to a narrow-band prior. We show important relations to Wiener filter denoising. Indeed, the proposed method is a generalization of the classic Wiener filter into multiple, adaptive bands. Our model provides a solution to the decomposition problem that is theoretically well founded and still easy to understand. The variational model is efficiently optimized using an alternating direction method of multipliers approach. Preliminary results show attractive performance with respect to existing mode decomposition models. In particular, our proposed model is much more robust to sampling and noise. Finally, we show promising practical decomposition results on a series of artificial and real data.
4,111 citations
01 Oct 1962
TL;DR: In this paper, an active pulse transmission line using tunnel diodes was made to electronically simulate an animal nerve axon, and the equation of propagation for this line is the same as that for a simplified model of nerve membrane treated elsewhere.
Abstract: To electronically simulate an animal nerve axon, the authors made an active pulse transmission line using tunnel diodes. The equation of propagation for this line is the same as that for a simplified model of nerve membrane treated elsewhere. This line shapes the signal waveform during transmission, that is, there being a specific pulse-like waveform peculiar to this line, smaller signals are amplified, larger ones are attenuated, narrower ones are widened and those which are wider are shrunk, all approaching the above-mentioned specific waveform. In addition, this line has a certain threshold value in respect to the signal height, and signals smaller than the threshold or noise are eliminated in the course of transmission. Because of the above-mentioned shaping action and the existence of a threshold, this line makes possible highly reliable pulse transmission, and will be useful for various kinds of information-processing systems.
3,516 citations