scispace - formally typeset
Search or ask a question
Topic

Non-rapid eye movement sleep

About: Non-rapid eye movement sleep is a research topic. Over the lifetime, 8661 publications have been published within this topic receiving 389465 citations. The topic is also known as: NREM.


Papers
More filters
Journal ArticleDOI
01 Nov 2005-Sleep
TL;DR: Maturational changes of homeostatic sleep regulation are permissive of the sleep phase delay in the course of adolescence as well as aspects of sleep homeostasis.
Abstract: STUDY OBJECTIVES: To examine the effects of total sleep deprivation on adolescent sleep and the sleep electroencephalogram (EEG) and to study aspects of sleep homeostasis. DESIGN: Subjects were studied during baseline and recovery sleep after 36 hours of wakefulness. SETTING: Four-bed sleep research laboratory. PARTICIPANTS: Seven prepubertal or early pubertal children (pubertal stage Tanner 1 or 2 = Tanner 1/2; mean age 11.9 years, SD +/- 0.8, 2 boys) and 6 mature adolescents (Tanner 5; 14.2 years, +/- 1.4, 2 boys). INTERVENTIONS: Thirty-six hours of sleep deprivation. MEASUREMENTS: All-night polysomnography was performed. EEG power spectra (C3/A2) were calculated using a Fast Fourier transform routine. RESULTS: In both groups, sleep latency was shorter, sleep efficiency was higher, non-rapid eye movement (NREM) sleep stage 4 was increased, and waking after sleep onset was reduced in recovery relative to baseline sleep. Spectral power of the NREM sleep EEG was enhanced after sleep deprivation in the low-frequency range (1.6-3.6 Hz in Tanner 1/2; 0.8-6.0 Hz in Tanner 5) and reduced in the sigma range (11-15 Hz). Sleep deprivation resulted in a stronger increase of slow-wave activity (EEG power 0.6-4.6 Hz, marker for sleep homeostatic pressure) in Tanner 5 (39% above baseline) than in Tanner 1/2 adolescents (18% above baseline). Sleep homeostasis was modeled according to the two-process model of sleep regulation. The build-up of homeostatic sleep pressure during wakefulness was slower in Tanner 5 adolescents (time constant of exponential saturating function 15.4 +/- 2.5 hours) compared with Tanner 1/2 children (8.9 +/- 1.2 hours). In contrast, the decline of the homeostatic process was similar in both groups. CONCLUSION: Maturational changes of homeostatic sleep regulation are permissive of the sleep phase delay in the course of adolescence.

383 citations

Journal ArticleDOI
01 Dec 2007-Sleep
TL;DR: In the human EEG, the decline of SWA during sleep is accompanied by changes in slow-wave parameters that were predicted by a computer model simulating a homeostatic reduction of cortical synaptic strength.
Abstract: SLOW WAVES ARE THE MOST OBVIOUS AND RECOGNIZABLE FEATURE OF THE HUMAN SLEEP EEG. IN ADDITION TO BEING INDICATIVE OF SLEEP DEPTH,5 SLOW waves are intimately related to sleep regulation: it is well known that SWA (EEG power between 0.5 and 4.0 Hz), which reflects the abundance of low-frequency waves in the EEG, increases as a function of prior waking and declines throughout the course of sleep.6–8 Although the regulation of SWA is suggestive of a restorative function of sleep, the mechanisms responsible for SWA homeostasis remain unclear. It was recently suggested that the level of SWA during sleep may be a function of the strength of cortical synapses due to the influence of synaptic efficacy on network synchronization.1, 2 According to the hypothesis, at the beginning of sleep, synaptic strength would be high due to learning processes occurring during wakefulness, whereas, by the end of sleep, synaptic strength would have decreased through a sleep-dependent process of synaptic downscaling. The hypothesized relationship between synaptic strength and the level of SWA was investigated in a companion paper using a large-scale model of sleep in the thalamocortical system.3 The simulation showed that decreasing synaptic strength among cortical neurons led to a decrease in sleep SWA.3 Intriguingly, synaptic strength reduction also resulted in characteristic changes to several slow-wave parameters, including a decrease in the number of high-amplitude slow waves, a decrease in the slope of slow waves, and more frequent waves with multiple peaks. In a second companion paper, we tested the model's predictions by employing local field potential (LFP) recordings in the rat to compare periods of early and late sleep.4 We found that the decline in SWA in the LFP was associated with the changes in slow-wave parameters predicted by the model. Furthermore, recovery after sleep deprivation resulted in an increased number of high-amplitude slow waves, steeper slopes, and fewer multipeak waves, suggesting that these observed changes in slow-wave parameters are a result of homeostatic sleep regulation and not circadian time. In the present paper, we tested the model's predictions in humans. We used all-night high-density EEG (hd-EEG) recordings to compare non-rapid eye movement (NREM) sleep slow waves at the beginning of the night, when the pressure to sleep is highest, to NREM sleep slow waves toward morning, when sleep pressure has largely dissipated. We found that, as predicted by computer simulations, and in line with rat LFP recordings, the homeostatic decline of SWA during sleep is coupled with a decreased incidence of high-amplitude slow waves, a decreased slope of slow waves, and an increased number of multipeak waves. Moreover, we found that individual peaks of the multipeak waves characteristic of late sleep have distinct cortical origins.

383 citations

Journal ArticleDOI
TL;DR: It is shown that sleep preferentially benefits consolidation of memories that are relevant for future behavior, presumably through a SWS-dependent reprocessing of these memories.
Abstract: The brain encodes huge amounts of information, but only a small fraction is stored for a longer time. There is now compelling evidence that the long-term storage of memories preferentially occurs during sleep. However, the factors mediating the selectivity of sleep-associated memory consolidation are poorly understood. Here, we show that the mere expectancy that a memory will be used in a future test determines whether or not sleep significantly benefits consolidation of this memory. Human subjects learned declarative memories (word paired associates) before retention periods of sleep or wakefulness. Postlearning sleep compared with wakefulness produced a strong improvement at delayed retrieval only if the subjects had been informed about the retrieval test after the learning period. If they had not been informed, retrieval after retention sleep did not differ from that after the wake retention interval. Retention during the wake intervals was not affected by retrieval expectancy. Retrieval expectancy also enhanced sleep-associated consolidation of visuospatial (two-dimensional object location task) and procedural motor memories (finger sequence tapping). Subjects expecting the retrieval displayed a robust increase in slow oscillation activity and sleep spindle count during postlearning slow-wave sleep (SWS). Sleep-associated consolidation of declarative memory was strongly correlated to slow oscillation activity and spindle count, but only if the subjects expected the retrieval test. In conclusion, our work shows that sleep preferentially benefits consolidation of memories that are relevant for future behavior, presumably through a SWS-dependent reprocessing of these memories.

382 citations

Journal ArticleDOI
TL;DR: The incidence of both fragmenting sleep disorders and chronic partial sleep deprivation is very high in the authors' society, and clinicians must be able to recognize and treat Insufficient Sleep Syndrome even when present with other sleep disorders.

381 citations

Journal ArticleDOI
TL;DR: It appears possible that the high-potency drugs exert their effects on sleep in schizophrenic patients, for the most part, in an indirect way by suppressing stressful psychotic symptomatology.
Abstract: Difficulties initiating or maintaining sleep are frequently encountered in patients with schizophrenia. Disturbed sleep can be found in 30–80% of schizophrenic patients, depending on the degree of psychotic symptomatology. Measured by polysomnography, reduced sleep efficiency and total sleep time, as well as increased sleep latency, are found in most patients with schizophrenia and appear to be an important part of the pathophysiology of this disorder. Some studies also reported alterations of stage 2 sleep, slow-wave sleep (SWS) and rapid eye movement (REM) sleep variables, i.e. reduced REM latency and REM density. A number of sleep parameters, such as the amount of SWS and the REM latency, are significantly correlated to clinical variables, including severity of illness, positive symptoms, negative symptoms, outcome, neurocognitive impairment and brain structure. Concerning specific sleep disorders, there is some evidence that schizophrenic patients carry a higher risk of experiencing a sleep-related breathing disorder, especially those demonstrating the known risk factors, including being overweight but also long-term use of antipsychotics. However, it is still unclear whether periodic leg movements in sleep or restless legs syndrome (RLS) are found with a higher or lower prevalence in schizophrenic patients than in healthy controls. There are no consistent effects of first-generation antipsychotics on measuresof sleep continuity and sleep structure, including the percentage of sleep stages or sleep and REM latency in healthy controls. In contrast to first-generation antipsychotics, the studied atypical antipsychotics (clozapine, olanzapine, quetiapine, risperidone, ziprasidone and paliperidone) demonstrate a relatively consistent effect on measures of sleep continuity, with an increase in either total sleep time (TST) or sleep efficiency, and individually varying effects on other sleep parameters, such as an increase in REM latency observed for olanzapine, quetiapine and ziprasidone, and an increase in SWS documented for olanzapine and ziprasidone in healthy subjects. The treatment of schizophrenic patients with first-generation antipsychotics is consistently associated with an increase in TST and sleep efficiency, and mostly an increase in REM latency, whereas the influence on specific sleep stages is more variable. On the other hand, withdrawal of such treatment is followed by a change in sleep structure mainly in the opposite direction, indicating a deterioration of sleep quality. On the background of the rather inconsistent effects of first-generation antipsychotics observed in healthy subjects, it appears possible that the high-potency drugs exert their effects on sleep in schizophrenic patients, for the most part, in an indirect way by suppressing stressful psychotic symptomatology. In contrast, the available data concerning second-generation antipsychotics (clozapine, olanzapine, risperidone and paliperidone) demonstrate a relatively consistent effect on measures of sleep continuity in patients and healthy subjects, with an increase in TST and sleep efficiency or a decrease in wakefulness. Additionally, clozapine and olanzapine demonstrate comparable influences on other sleep variables, such as SWS or REM density, in controls and schizophrenic patients. Possibly, the effects of second-generation antipsychotics observed on sleep in healthy subjects and schizophrenic patients might involve the action of these drugs on symptomatology, such as depression, cognitive impairment, and negative and positive symptoms. Specific sleep disorders, such as RLS, sleep-related breathing disorders, night-eating syndrome, somnambulism and rhythm disorders have been described as possible adverse effects of antipsychotics and should be considered in the differential diagnosis of disturbed or unrestful sleep in this population.

380 citations


Network Information
Related Topics (5)
Prefrontal cortex
24K papers, 1.9M citations
82% related
Dopaminergic
29K papers, 1.4M citations
81% related
Dopamine
45.7K papers, 2.2M citations
80% related
Hippocampal formation
30.6K papers, 1.7M citations
80% related
Hippocampus
34.9K papers, 1.9M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023229
2022453
2021353
2020283
2019315
2018221