scispace - formally typeset
Search or ask a question
Topic

Non-rapid eye movement sleep

About: Non-rapid eye movement sleep is a research topic. Over the lifetime, 8661 publications have been published within this topic receiving 389465 citations. The topic is also known as: NREM.


Papers
More filters
Journal ArticleDOI
TL;DR: Extended wake during the circadian night reveals the cumulative detrimental effects of chronic sleep loss on performance, with potential adverse health and safety consequences for employers.
Abstract: Sleep loss leads to profound performance decrements. Yet many individuals believe they adapt to chronic sleep loss or that recovery requires only a single extended sleep episode. To evaluate this, we designed a protocol whereby the durations of sleep and wake episodes were increased to 10 and 32.85 hours, respectively, to yield a reduced sleep-to-wake ratio of 1:3.3. These sleep and wake episodes were distributed across all circadian phases, enabling measurement of the effects of acute and chronic sleep loss at different times of the circadian day and night. Despite recurrent acute and substantial chronic sleep loss, 10-hour sleep opportunities consistently restored vigilance task performance during the first several hours of wakefulness. However, chronic sleep loss markedly increased the rate of deterioration in performance across wakefulness, particularly during the circadian “night.” Thus, extended wake during the circadian night reveals the cumulative detrimental effects of chronic sleep loss on performance, with potential adverse health and safety consequences.

212 citations

Journal ArticleDOI
TL;DR: The results are consistent with the view that a dysregulation of the REM sleep control system, particularly phasic event generation, may be involved in the pathogenesis of PTSD.

211 citations

Book ChapterDOI
01 Jan 2003
TL;DR: In a preliminary attempt to reconcile the two models, an alternative model is proposed that assumes the existence of covert REM sleep processes during NREM sleep, which may be responsible for much of the dreamlike cognitive activity occurring in NREMSleep.
Abstract: Numerous studies have replicated the finding of mentation in both rapid eye movement (REM) and nonrapid eye movement (NREM) sleep. However, two different theoretical models have been proposed to account for this finding: (1) a one-generator model, in which mentation is generated by a single set of processes regardless of physiological differences between REM and NREM sleep; and (2) a two-generator model, in which qualitatively different generators produce cognitive activity in the two states. First, research is reviewed demonstrating conclusively that mentation can occur in NREM sleep; global estimates show an average mentation recall rate of about 50% from NREM sleep--a value that has increased substantially over the years. Second, nine different types of research on REM and NREM cognitive activity are examined for evidence supporting or refuting the two models. The evidence largely, but not completely, favors the two-generator model. Finally, in a preliminary attempt to reconcile the two models, an alternative model is proposed that assumes the existence of covert REM sleep processes during NREM sleep. Such covert activity may be responsible for much of the dreamlike cognitive activity occurring in NREM sleep.

210 citations

Journal ArticleDOI
TL;DR: It is argued that dreaming can be understood as an “intensified” version of waking MW: though the two share many similarities, dreams tend to be longer, more visual and immersive, and to more strongly recruit numerous key hubs of the DMN.
Abstract: Isolated reports have long suggested a similarity in content and thought processes across mind wandering (MW) during waking, and dream mentation during sleep. This overlap has encouraged speculation that both ‘daydreaming’ and dreaming may engage similar brain mechanisms. To explore this possibility, we systematically examined published first-person experiential reports of MW and dreaming and found many similarities: in both states, content is largely audiovisual and emotional, follows loose narratives tinged with fantasy, is strongly related to current concerns, draws on long-term memory, and simulates social interactions. Both states are also characterized by a relative lack of meta-awareness. To relate first-person reports to neural evidence, we compared meta-analytic data from numerous functional neuroimaging (PET, fMRI) studies of the default mode network (DMN, with high chances of MW) and rapid eye movement (REM) sleep (with high chances of dreaming). Our findings show large overlaps in activation patterns of cortical regions: similar to MW/DMN activity, dreaming and REM sleep activate regions implicated in self-referential thought and memory, including medial prefrontal cortex (PFC), medial temporal lobe structures, and posterior cingulate. Conversely, in REM sleep numerous PFC executive regions are deactivated, even beyond levels seen during waking MW. We argue that dreaming can be understood as an ‘intensified’ version of waking MW: though the two share many similarities, dreams tend to be longer, more visual and immersive, and to more strongly recruit numerous key hubs of the DMN. Further, whereas MW recruits fewer PFC regions than goal-directed thought, dreaming appears to be characterized by an even deeper quiescence of PFC regions involved in cognitive control and metacognition, with a corresponding lack of insight and meta-awareness. We suggest, then, that dreaming amplifies the same features that distinguish MW from goal-directed waking thought.

210 citations

Journal ArticleDOI
TL;DR: In the 6 h recovery period following sleep deprivation, spectral power of the nonrapid eye‐movement (NREM) sleep EEG in the 0.75–6.0 Hz range exhibited an interhemispheric shift towards the cortex that was contralateral to the intact whiskers, which support the theory that sleep has a regional, use‐dependent facet.
Abstract: To test the theory that sleep is a regional, use-dependent process, rats were subjected to unilateral sensory stimulation during waking. This was achieved by cutting the whiskers on one side, in order to reduce the sensory input to the contralateral cortex. The animals were kept awake for 6 h in an enriched environment to activate the cortex contralateral to the intact side. Whiskers are known to be represented in the barrel field of the contralateral somatosensory cortex and their stimulation during exploratory behavior results in a specific activation of the projection area. In the 6 h recovery period following sleep deprivation, spectral power of the nonrapid eye-movement (NREM) sleep EEG in the 0.75-6.0 Hz range exhibited an interhemispheric shift towards the cortex that was contralateral to the intact whiskers. The results support the theory that sleep has a regional, use-dependent facet.

210 citations


Network Information
Related Topics (5)
Prefrontal cortex
24K papers, 1.9M citations
82% related
Dopaminergic
29K papers, 1.4M citations
81% related
Dopamine
45.7K papers, 2.2M citations
80% related
Hippocampal formation
30.6K papers, 1.7M citations
80% related
Hippocampus
34.9K papers, 1.9M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023229
2022453
2021353
2020283
2019315
2018221