scispace - formally typeset
Search or ask a question
Topic

Non-rapid eye movement sleep

About: Non-rapid eye movement sleep is a research topic. Over the lifetime, 8661 publications have been published within this topic receiving 389465 citations. The topic is also known as: NREM.


Papers
More filters
Journal ArticleDOI
21 Jun 2017-Neuron
TL;DR: The DRNDA population is a critical contributor to wake-promoting pathways and is capable of modulating sleep-wake states according to the outside environment, wherein the perception of salient stimuli prompts vigilance and arousal.

187 citations

Journal ArticleDOI
TL;DR: The results suggest that glutamatergic neurons in the lateral PB are necessary for arousals from sleep in response to CO2, while medial PB glutamaters play an important role in promoting spontaneous waking.
Abstract: The mechanisms of arousal from apneas during sleep in patients suffering from obstructive sleep apnea are not well understood. However, we know that respiratory chemosensory pathways converge on the parabrachial nucleus (PB), which sends glutamatergic projections to a variety of forebrain structures critical to arousal, including the basal forebrain, lateral hypothalamus, midline thalamus, and cerebral cortex. We tested the role of glutamatergic signaling in this pathway by developing an animal model for repetitive CO2 arousals (RCAs) and investigating the effect of deleting the gene for the vesicular glutamate transporter 2 (Vglut2) from neurons in the PB. We used mice with lox P sequences flanking exon2 of the Vglut2 gene, in which adeno-associated viral vectors containing genes encoding Cre recombinase and green fluorescent protein were microinjected into the PB to permanently and selectively disrupt Vglut2 expression while labeling the affected neurons. We recorded sleep in these mice and then investigated the arousals during RCA. Vglut2 deletions that included the external lateral and lateral crescent subdivisions of the lateral PB more than doubled the latency to arousal and resulted in failure to arouse by 30 s in >30% of trials. By contrast, deletions that involved the medial PB subdivision had minimal effects on arousal during hypercapnia but instead increased non-rapid eye movement (NREM) sleep by ∼43% during the dark period, and increased delta power in the EEG during NREM sleep by ∼50%. Our results suggest that glutamatergic neurons in the lateral PB are necessary for arousals from sleep in response to CO2, while medial PB glutamatergic neurons play an important role in promoting spontaneous waking.

187 citations

Journal ArticleDOI
TL;DR: It is proposed that "instability" of REM sleep contributes to the experience of disrupted and non-restorative sleep and to the explanation of this discrepancy between minor objective alterations in standard parameters of sleep continuity and the profound subjective impairment in patients with insomnia.
Abstract: Chronic insomnia afflicts approximately 10% of the adult population and is associated with daytime impairments and an elevated risk for developing somatic and mental disorders. Current pathophysiological models propose a persistent hyperarousal on the cognitive, emotional and physiological levels. However, the marked discrepancy between minor objective alterations in standard parameters of sleep continuity and the profound subjective impairment in patients with insomnia is unresolved. We propose that "instability" of REM sleep contributes to the experience of disrupted and non-restorative sleep and to the explanation of this discrepancy. This concept is based on evidence showing increased micro- and macro-arousals during REM sleep in insomnia patients. As REM sleep represents the most highly aroused brain state during sleep it seems particularly prone to fragmentation in individuals with persistent hyperarousal. The continuity hypothesis of dream production suggests that pre-sleep concerns of patients with insomnia, i. e., worries about poor sleep and its consequences, dominate their dream content. Enhanced arousal during REM sleep may render these wake-like cognitions more accessible to conscious perception, memory storage and morning recall, resulting in the experience of disrupted and non-restorative sleep. Furthermore, chronic fragmentation of REM sleep might lead to dysfunction in a ventral emotional neural network, including limbic and paralimbic areas that are specifically activated during REM sleep. This dysfunction, along with attenuated functioning in a dorsal executive neural network, including frontal and prefrontal areas, might contribute to emotional and cognitive alterations and an elevated risk of developing depression.

187 citations

Journal ArticleDOI
11 Apr 1980-Science
TL;DR: These results, and others, suggest that patients with primary affective illness may have a supersensitive cholinergic system both when they are ill and when their symptoms are in clinical remission.
Abstract: Arecoline, a cholinergic muscarinic receptor agonist, induced rapid eye movement sleep significantly more rapidly in patients with primary affective illness in remission than in normal control subjects matched for age and sex. These results, and others, suggest that patients with primary affective illness may have a supersensitive cholinergic system both when they are ill and when their symptoms are in clinical remission.

185 citations

Journal ArticleDOI
TL;DR: Increased connectivity between HF and neocortical regions in sleep stage 2 suggests an increased capacity for possible global information transfer, while connectivity in slow-wave sleep is reflecting a functional system optimal for segregated information reprocessing.
Abstract: We investigated human hippocampal functional connectivity in wakefulness and throughout non-rapid eye movement sleep. Young healthy subjects underwent simultaneous EEG and functional magnetic resonance imaging (fMRI) measurements at 1.5 T under resting conditions in the descent to deep sleep. Continuous 5 min epochs representing a unique sleep stage (i.e., wakefulness, sleep stages 1 and 2, or slow-wave sleep) were extracted. fMRI time series of subregions of the hippocampal formation (HF) (cornu ammonis, dentate gyrus, and subiculum) were extracted based on cytoarchitectonical probability maps. We observed sleep stage-dependent changes in HF functional coupling. The HF was integrated to variable strength in the default mode network (DMN) in wakefulness and light sleep stages but not in slow-wave sleep. The strongest functional connectivity between the HF and neocortex was observed in sleep stage 2 (compared with both slow-wave sleep and wakefulness). We observed a strong interaction of sleep spindle occurrence and HF functional connectivity in sleep stage 2, with increased HF/neocortical connectivity during spindles. Moreover, the cornu ammonis exhibited strongest functional connectivity with the DMN during wakefulness, while the subiculum dominated hippocampal functional connectivity to frontal brain regions during sleep stage 2. Increased connectivity between HF and neocortical regions in sleep stage 2 suggests an increased capacity for possible global information transfer, while connectivity in slow-wave sleep is reflecting a functional system optimal for segregated information reprocessing. Our data may be relevant to differentiating sleep stage-specific contributions to neural plasticity as proposed in sleep-dependent memory consolidation.

185 citations


Network Information
Related Topics (5)
Prefrontal cortex
24K papers, 1.9M citations
82% related
Dopaminergic
29K papers, 1.4M citations
81% related
Dopamine
45.7K papers, 2.2M citations
80% related
Hippocampal formation
30.6K papers, 1.7M citations
80% related
Hippocampus
34.9K papers, 1.9M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023229
2022453
2021353
2020283
2019315
2018221