scispace - formally typeset
Search or ask a question
Topic

Non-rapid eye movement sleep

About: Non-rapid eye movement sleep is a research topic. Over the lifetime, 8661 publications have been published within this topic receiving 389465 citations. The topic is also known as: NREM.


Papers
More filters
Journal ArticleDOI
TL;DR: The results indicate that H(1)R is involved in the regulation of behavioral state transitions from NREM sleep to wakefulness and that the arousal effect of the H(3)R antagonist completely depends on the activation of histaminergic systems through H( 1)R.
Abstract: Histaminergic neurons play an important role in the regulation of sleep-wake behavior through histamine H(1) receptors (H(1)R). Blockade of the histamine H(3) receptor (H(3)R) is proposed to induce wakefulness by regulating the release of various wake-related transmitters, not only histamine. In the present study, we characterized sleep-wake cycles of H(1)R knockout (KO) mice and their arousal responses to an H(3)R antagonist. Under baseline conditions, H(1)R KO mice showed sleep-wake cycles essentially identical to those of WT mice but with fewer incidents of brief awakening (<16-sec epoch), prolonged durations of non-rapid eye movement (NREM) sleep episodes, a decreased number of state transitions between NREM sleep and wakefulness, and a shorter latency for initiating NREM sleep after an i.p. injection of saline. The H(1)R antagonist pyrilamine mimicked these effects in WT mice. When an H(3)R antagonist, ciproxifan, was administered i.p., wakefulness increased in WT mice in a dose-dependent manner but did not increase at all in H(1)R KO mice. In vivo microdialysis revealed that the i.p. application of ciproxifan increased histamine release from the frontal cortex in both genotypes of mice. These results indicate that H(1)R is involved in the regulation of behavioral state transitions from NREM sleep to wakefulness and that the arousal effect of the H(3)R antagonist completely depends on the activation of histaminergic systems through H(1)R.

169 citations

Journal ArticleDOI
TL;DR: The effects of Ramadan fasting on nocturnal sleep, with an increase in sleep latency and a decrease in SWS and REM sleep, and changes in Tre, were attributed to the inversion of drinking and meal schedule, rather than to an altered energy intake which was preserved in this study.
Abstract: During the month of Ramadan intermittent fasting, Muslims eat exclusively between sunset and sunrise, which may affect nocturnal sleep. The effects of Ramadan on sleep and rectal temperature (Tre) were examined in eight healthy young male subjects who reported at the laboratory on four occasions: (i) baseline 15 days before Ramadan (BL); (ii) on the eleventh day of Ramadan (beginning of Ramadan, BR); (iii) on the twenty-fifth day of Ramadan (end of Ramadan, ER); and (iv) 2 weeks after Ramadan (AR). Although each session was preceded by an adaptation night, data from the first night were discarded. Polysomnography was taken on ambulatory 8-channel Oxford Medilog MR-9000 II recorders. Standard electroencephalogram (EEG), electro-oculogram (EOG) and electromyogram (EMG) recordings were scored visually with the PhiTools ERA. The main finding of the study was that during Ramadan sleep latency is increased and sleep architecture modified. Sleep period time and total sleep time decreased in BR and ER. The proportion of non-rapid eye movement (NREM) sleep increased during Ramadan and its structure changed, with an increase in stage 2 proportion and a decrease in slow wave sleep (SWS) duration. Rapid eye movement (REM) sleep duration and proportion decreased during Ramadan. These changes in sleep parameters were associated with a delay in the occurrence of the acrophase of Tre and an increase in nocturnal Tre during Ramadan. However, the 24-h mean value (mesor) of Tre did not vary. The nocturnal elevation of Tre was related to a 2-3-h delay in the acrophase of the circadian rhythm. The amplitude of the circadian rhythm of Tre was decreased during Ramadan. The effects of Ramadan fasting on nocturnal sleep, with an increase in sleep latency and a decrease in SWS and REM sleep, and changes in Tre, were attributed to the inversion of drinking and meal schedule, rather than to an altered energy intake which was preserved in this study.

169 citations

Journal ArticleDOI
TL;DR: The high coherence of sleep spindles is an indication for their widespread and quasi-synchronous occurrence throughout the cortex and may point to their specific role in the sleep process, which may provide insights into large-scale functional connectivities of brain regions during sleep.

168 citations

Journal ArticleDOI
TL;DR: The Multiple Sleep Latency Test (MSLT) reveals a daily biphasic organization of sleepiness that is affected in predictable ways by the length and continuity of nocturnal sleep on one or several nights, and by maturation, aging, sleep pathology, and drug ingestion.

167 citations

Journal ArticleDOI
TL;DR: Age-related topographic changes in the sleep EEG can be interpreted as age-related shifts of power from the anterior (FC) towards the middle derivation (CP) of the brain topography, consistent with the notion of sleep as a local process.

167 citations


Network Information
Related Topics (5)
Prefrontal cortex
24K papers, 1.9M citations
82% related
Dopaminergic
29K papers, 1.4M citations
81% related
Dopamine
45.7K papers, 2.2M citations
80% related
Hippocampal formation
30.6K papers, 1.7M citations
80% related
Hippocampus
34.9K papers, 1.9M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023229
2022453
2021353
2020283
2019315
2018221