scispace - formally typeset
Search or ask a question
Topic

Non-uniform discrete Fourier transform

About: Non-uniform discrete Fourier transform is a research topic. Over the lifetime, 4067 publications have been published within this topic receiving 123952 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a new method for image encryption using fractional Fourier transform and chaos theory is proposed, where the input image is combined with the first random phase mask at the object plane and is then transformed using the FFT transform.

171 citations

Journal ArticleDOI
TL;DR: This paper develops the first known deterministic sublinear-time sparse Fourier Transform algorithm which is guaranteed to produce accurate results and implies a simpler optimized version of the deterministic compressed sensing method previously developed in.
Abstract: We study the problem of estimating the best k term Fourier representation for a given frequency sparse signal (i.e., vector) A of length N≫k. More explicitly, we investigate how to deterministically identify k of the largest magnitude frequencies of $\hat{\mathbf{A}}$, and estimate their coefficients, in polynomial(k,log N) time. Randomized sublinear-time algorithms which have a small (controllable) probability of failure for each processed signal exist for solving this problem (Gilbert et al. in ACM STOC, pp. 152–161, 2002; Proceedings of SPIE Wavelets XI, 2005). In this paper we develop the first known deterministic sublinear-time sparse Fourier Transform algorithm which is guaranteed to produce accurate results. As an added bonus, a simple relaxation of our deterministic Fourier result leads to a new Monte Carlo Fourier algorithm with similar runtime/sampling bounds to the current best randomized Fourier method (Gilbert et al. in Proceedings of SPIE Wavelets XI, 2005). Finally, the Fourier algorithm we develop here implies a simpler optimized version of the deterministic compressed sensing method previously developed in (Iwen in Proc. of ACM-SIAM Symposium on Discrete Algorithms (SODA’08), 2008).

170 citations

Journal ArticleDOI
TL;DR: The Fast Linear Canonical Transform (FLCT) as mentioned in this paper is derived from the linear canonical transform (LCT) and can be used for FFT, FRT, and FST calculations.
Abstract: The linear canonical transform (LCT) describes the effect of any quadratic phase system (QPS) on an input optical wave field. Special cases of the LCT include the fractional Fourier transform (FRT), the Fourier transform (FT), and the Fresnel transform (FST) describing free-space propagation. Currently there are numerous efficient algorithms used (for purposes of numerical simulation in the area of optical signal processing) to calculate the discrete FT, FRT, and FST. All of these algorithms are based on the use of the fast Fourier transform (FFT). In this paper we develop theory for the discrete linear canonical transform (DLCT), which is to the LCT what the discrete Fourier transform (DFT) is to the FT. We then derive the fast linear canonical transform (FLCT), an NlogN algorithm for its numerical implementation by an approach similar to that used in deriving the FFT from the DFT. Our algorithm is significantly different from the FFT, is based purely on the properties of the LCT, and can be used for FFT, FRT, and FST calculations and, in the most general case, for the rapid calculation of the effect of any QPS.

167 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed a linear canonical transform with three free parameters, as opposed to the fractional Fourier transform which has only one free parameter, and the ordinary Fourier transformation which has none.

165 citations

Journal ArticleDOI
TL;DR: In this paper, the finite Fourier transform of a finite sequence is defined and its elementary properties are developed, and the convolution and term-by-term product operations are defined and their equivalent operations in transform space.
Abstract: The finite Fourier transform of a finite sequence is defined and its elementary properties are developed. The convolution and term-by-term product operations are defined and their equivalent operations in transform space are given. A discussion of the transforms of stretched and sampled functions leads to a sampling theorem for finite sequences. Finally, these results are used to give a simple derivation of the fast Fourier transform algorithm.

165 citations


Network Information
Related Topics (5)
Wavelet
78K papers, 1.3M citations
88% related
Image processing
229.9K papers, 3.5M citations
81% related
Feature extraction
111.8K papers, 2.1M citations
80% related
Robustness (computer science)
94.7K papers, 1.6M citations
79% related
Pixel
136.5K papers, 1.5M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202318
202233
20213
20201
20191
20189