scispace - formally typeset
Search or ask a question
Topic

Nonlinear control

About: Nonlinear control is a research topic. Over the lifetime, 22457 publications have been published within this topic receiving 600038 citations.


Papers
More filters
Book
01 Jan 1991
TL;DR: Covers in a progressive fashion a number of analysis tools and design techniques directly applicable to nonlinear control problems in high performance systems (in aerospace, robotics and automotive areas).
Abstract: Covers in a progressive fashion a number of analysis tools and design techniques directly applicable to nonlinear control problems in high performance systems (in aerospace, robotics and automotive areas).

15,545 citations

Book
01 Jan 1985
TL;DR: In this paper, a systematic feedback design theory for solving the problems of asymptotic tracking and disturbance rejection for linear distributed parameter systems is presented, which is intended to support the development of flight controllers for increasing the high angle of attack or high agility capabilities of existing and future generations of aircraft.
Abstract: : The principal goal of this three years research effort was to enhance the research base which would support efforts to systematically control, or take advantage of, dominant nonlinear or distributed parameter effects in the evolution of complex dynamical systems. Such an enhancement is intended to support the development of flight controllers for increasing the high angle of attack or high agility capabilities of existing and future generations of aircraft and missiles. The principal investigating team has succeeded in the development of a systematic methodology for designing feedback control laws solving the problems of asymptotic tracking and disturbance rejection for nonlinear systems with unknown, or uncertain, real parameters. Another successful research project was the development of a systematic feedback design theory for solving the problems of asymptotic tracking and disturbance rejection for linear distributed parameter systems. The technical details which needed to be overcome are discussed more fully in this final report.

8,525 citations

Journal ArticleDOI
TL;DR: This review focuses on model predictive control of constrained systems, both linear and nonlinear, and distill from an extensive literature essential principles that ensure stability to present a concise characterization of most of the model predictive controllers that have been proposed in the literature.

8,064 citations

Book
01 Jan 1995
TL;DR: In this paper, the focus is on adaptive nonlinear control results introduced with the new recursive design methodology -adaptive backstepping, and basic tools for nonadaptive BackStepping design with state and output feedbacks.
Abstract: From the Publisher: Using a pedagogical style along with detailed proofs and illustrative examples, this book opens a view to the largely unexplored area of nonlinear systems with uncertainties. The focus is on adaptive nonlinear control results introduced with the new recursive design methodology--adaptive backstepping. Describes basic tools for nonadaptive backstepping design with state and output feedbacks.

6,923 citations

Journal ArticleDOI
TL;DR: Active disturbance rejection control is proposed, which is motivated by the ever increasing demands from industry that requires the control technology to move beyond PID, and may very well break the hold of classical PID and enter a new era of innovations.
Abstract: Active disturbance rejection control (ADRC) can be summarized as follows: it inherits from proportional-integral-derivative (PID) the quality that makes it such a success: the error driven, rather than model-based, control law; it takes from modern control theory its best offering: the state observer; it embraces the power of nonlinear feedback and puts it to full use; it is a useful digital control technology developed out of an experimental platform rooted in computer simulations ADRC is made possible only when control is taken as an experimental science, instead of a mathematical one It is motivated by the ever increasing demands from industry that requires the control technology to move beyond PID, which has dominated the practice for over 80 years Specifically, there are four areas of weakness in PID that we strive to address: 1) the error computation; 2) noise degradation in the derivative control; 3) oversimplification and the loss of performance in the control law in the form of a linear weighted sum; and 4) complications brought by the integral control Correspondingly, we propose four distinct measures: 1) a simple differential equation as a transient trajectory generator; 2) a noise-tolerant tracking differentiator; 3) the nonlinear control laws; and 4) the concept and method of total disturbance estimation and rejection Together, they form a new set of tools and a new way of control design Times and again in experiments and on factory floors, ADRC proves to be a capable replacement of PID with unmistakable advantage in performance and practicality, providing solutions to pressing engineering problems of today With the new outlook and possibilities that ADRC represents, we further believe that control engineering may very well break the hold of classical PID and enter a new era, an era that brings back the spirit of innovations

4,530 citations


Network Information
Related Topics (5)
Control theory
299.6K papers, 3.1M citations
95% related
Optimal control
68K papers, 1.2M citations
94% related
Linear system
59.5K papers, 1.4M citations
92% related
Control system
129K papers, 1.5M citations
91% related
Robustness (computer science)
94.7K papers, 1.6M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202317
202265
2021520
2020581
2019596
2018584