scispace - formally typeset
Search or ask a question
Topic

Nonlinear programming

About: Nonlinear programming is a research topic. Over the lifetime, 19486 publications have been published within this topic receiving 656602 citations. The topic is also known as: non-linear programming & NLP.


Papers
More filters
Journal ArticleDOI
TL;DR: An overview of developments in robust optimization since 2007 is provided to give a representative picture of the research topics most explored in recent years, highlight common themes in the investigations of independent research teams and highlight the contributions of rising as well as established researchers both to the theory of robust optimization and its practice.

742 citations

Journal ArticleDOI
TL;DR: This work introduces a decentralized scheme for least-squares and best linear unbiased estimation (BLUE) and establishes its convergence in the presence of communication noise and introduces a method of multipliers in conjunction with a block coordinate descent approach to demonstrate how the resultant algorithm can be decomposed into a set of simpler tasks suitable for distributed implementation.
Abstract: We deal with distributed estimation of deterministic vector parameters using ad hoc wireless sensor networks (WSNs). We cast the decentralized estimation problem as the solution of multiple constrained convex optimization subproblems. Using the method of multipliers in conjunction with a block coordinate descent approach we demonstrate how the resultant algorithm can be decomposed into a set of simpler tasks suitable for distributed implementation. Different from existing alternatives, our approach does not require the centralized estimator to be expressible in a separable closed form in terms of averages, thus allowing for decentralized computation even of nonlinear estimators, including maximum likelihood estimators (MLE) in nonlinear and non-Gaussian data models. We prove that these algorithms have guaranteed convergence to the desired estimator when the sensor links are assumed ideal. Furthermore, our decentralized algorithms exhibit resilience in the presence of receiver and/or quantization noise. In particular, we introduce a decentralized scheme for least-squares and best linear unbiased estimation (BLUE) and establish its convergence in the presence of communication noise. Our algorithms also exhibit potential for higher convergence rate with respect to existing schemes. Corroborating simulations demonstrate the merits of the novel distributed estimation algorithms.

740 citations

Journal ArticleDOI
TL;DR: This paper considers an alternative ‘randomized’ or ‘scenario’ approach for dealing with uncertainty in optimization, based on constraint sampling, and studies the constrained optimization problem resulting by taking into account only a finite set of N constraints, chosen at random among the possible constraint instances of the uncertain problem.
Abstract: Many engineering problems can be cast as optimization problems subject to convex constraints that are parameterized by an uncertainty or ‘instance’ parameter. Two main approaches are generally available to tackle constrained optimization problems in presence of uncertainty: robust optimization and chance-constrained optimization. Robust optimization is a deterministic paradigm where one seeks a solution which simultaneously satisfies all possible constraint instances. In chance-constrained optimization a probability distribution is instead assumed on the uncertain parameters, and the constraints are enforced up to a pre-specified level of probability. Unfortunately however, both approaches lead to computationally intractable problem formulations. In this paper, we consider an alternative ‘randomized’ or ‘scenario’ approach for dealing with uncertainty in optimization, based on constraint sampling. In particular, we study the constrained optimization problem resulting by taking into account only a finite set of N constraints, chosen at random among the possible constraint instances of the uncertain problem. We show that the resulting randomized solution fails to satisfy only a small portion of the original constraints, provided that a sufficient number of samples is drawn. Our key result is to provide an efficient and explicit bound on the measure (probability or volume) of the original constraints that are possibly violated by the randomized solution. This volume rapidly decreases to zero as N is increased.

734 citations

Journal ArticleDOI
TL;DR: In this paper, a man-machine interactive mathematical programming method is presented for solving the multiple criteria problem involving a single decision maker, where all decision-relevant criteria or objective functions are concave functions to be maximized, and the constraint set is convex.
Abstract: In this paper a man-machine interactive mathematical programming method is presented for solving the multiple criteria problem involving a single decision maker. It is assumed that all decision-relevant criteria or objective functions are concave functions to be maximized, and that the constraint set is convex. The overall utility function is assumed to be unknown explicitly to the decision maker, but is assumed to be implicitly a linear function, and more generally a concave function of the objective functions. To solve a problem involving multiple objectives the decision maker is requested to provide answers to yes and no questions regarding certain trade offs that he likes or dislikes. Convergence of the method is proved; a numerical example is presented. Tests of the method as well as an extension of the method for solving integer linear programming problems are also described.

732 citations


Network Information
Related Topics (5)
Optimization problem
96.4K papers, 2.1M citations
93% related
Scheduling (computing)
78.6K papers, 1.3M citations
86% related
Robustness (computer science)
94.7K papers, 1.6M citations
86% related
Linear system
59.5K papers, 1.4M citations
85% related
Control theory
299.6K papers, 3.1M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023113
2022259
2021615
2020650
2019640
2018630