scispace - formally typeset
Search or ask a question

Showing papers on "Nonlinear system published in 2016"


Book
02 Jan 2016
TL;DR: In this paper, the authors present an ALGOLGOL-based approach for the inclusion of complex Zeros of polynomials of a function of one real variable in a system of linear systems of equations.
Abstract: Preface to the English Edition. Preface to the German Edition. Real Interval Arithmetic. Further Concepts and Properties. Interval Evaluation and Range of Real Functions. Machine Interval Arithmetic. Complex Interval Arithmetic. Metric, Absolute, Value, and Width in. Inclusion of Zeros of a Function of One Real Variable. Methods for the Simultaneous Inclusion of Real Zeros of Polynomials. Methods for the Simultaneous Inclusion of Complex Zeros of Polynomials. Interval Matrix Operations. Fixed Point Iteration for Nonlinear Systems of Equations. Systems of Linear Equations Amenable to Interation. Optimality of the Symmetric Single Step Method with Taking Intersection after Every Component. On the Feasibility of the Gaussian Algorithm for Systems of Equations with Intervals as Coefficients. Hansen's Method. The Procedure of Kupermann and Hansen. Ireation Methods for the Inclusion of the Inverse Matrix and for Triangular Decompositions. Newton-like Methods for Nonlinear Systems of Equations. Newton-like Methods without Matrix Inversions. Newton-like Methods for Particular Systems of Nonlinear Equations. Newton-like Total step and Single Step Methods. Appendix A. The Order of Convergence of Iteration Methods in vn(Ic) and Mmn(iC) ). Appendix B. Realizations of Machine Interval Arithmetics in ALGOL 60. Appendix C. ALGOL Procedures. Bibliography. Index of Notation. Subject Index.

2,054 citations


01 Jan 2016
TL;DR: Nonlinear Control Design: Geometric, Adaptive and Robust ... 1.2.3 Adaptive control as dynamic nonlinear feedback 1.1.4 Lyapunov-based design Adaptive Nonlinear Control.
Abstract: Nonlinear Control Design: Geometric, Adaptive and Robust ... 1.1.1 Emergence of adaptive control 1.1.2 Achievements of adaptive linear control 1.1.3 Adaptive control as dynamic nonlinear feedback 1.1.4 Lyapunov-based design 1.1.5 Estimation-based design Adaptive Nonlinear Control 1.2.1 A nonlinear challenge 1.2.2 A structural obstacle 1.2.3 Early results Preview of the Main Topics 1.3.1 Classes of ...

1,272 citations


Journal ArticleDOI
TL;DR: The concept of parity-time symmetric systems is rooted in non-Hermitian quantum mechanics where complex potentials obeying this symmetry could exhibit real spectra as discussed by the authors, which has applications in many fields of physics, e.g., in optics, metamaterials, acoustics, Bose-Einstein condensation, electronic circuitry, etc.
Abstract: The concept of parity-time symmetric systems is rooted in non-Hermitian quantum mechanics where complex potentials obeying this symmetry could exhibit real spectra. The concept has applications in many fields of physics, e.g., in optics, metamaterials, acoustics, Bose-Einstein condensation, electronic circuitry, etc. The inclusion of nonlinearity has led to a number of new phenomena for which no counterparts exist in traditional dissipative systems. Several examples of nonlinear parity-time symmetric systems in different physical disciplines are presented and their implications discussed.

938 citations


Journal ArticleDOI
TL;DR: In this paper, Atangana and Baleanu proposed a derivative with fractional order to answer some outstanding questions that were posed by many researchers within the field of fractional calculus.
Abstract: Recently, Atangana and Baleanu proposed a derivative with fractional order to answer some outstanding questions that were posed by many researchers within the field of fractional calculus. Their derivative has a non-singular and nonlocal kernel. In this paper, we presented further relationship of their derivatives with some integral transform operators. New results are presented. We applied this derivative to a simple nonlinear system. We show in detail the existence and uniqueness of the system solutions of the fractional system. We obtain a chaotic behavior which was not obtained by local derivative.

683 citations


Journal ArticleDOI
TL;DR: An adaptive control technique is developed for a class of uncertain nonlinear parametric systems and it is proved that all the signals in the closed-loop system are global uniformly bounded and the tracking error is remained in a bounded compact set.

676 citations


Book
01 Mar 2016
TL;DR: A thorough introduction to the variational analysis of nonlinear problems described by nonlocal operators can be found in this paper, where the authors give a systematic treatment of the basic mathematical theory and constructive methods for these classes of equations, plus their application to various processes arising in the applied sciences.
Abstract: This book provides researchers and graduate students with a thorough introduction to the variational analysis of nonlinear problems described by nonlocal operators. The authors give a systematic treatment of the basic mathematical theory and constructive methods for these classes of nonlinear equations, plus their application to various processes arising in the applied sciences. The equations are examined from several viewpoints, with the calculus of variations as the unifying theme. Part I begins the book with some basic facts about fractional Sobolev spaces. Part II is dedicated to the analysis of fractional elliptic problems involving subcritical nonlinearities, via classical variational methods and other novel approaches. Finally, Part III contains a selection of recent results on critical fractional equations. A careful balance is struck between rigorous mathematics and physical applications, allowing readers to see how these diverse topics relate to other important areas, including topology, functional analysis, mathematical physics, and potential theory.

613 citations


Journal ArticleDOI
TL;DR: Considering the dynamics of the overall closed-loop system, nonlinear model predictive control method is proposed to guarantee the system stability and compensate the network-induced delays and packet dropouts and to demonstrate the effectiveness of the proposed method.
Abstract: This paper investigates the multirate networked industrial process control problem in double-layer architecture. First, the output tracking problem for sampled-data nonlinear plant at device layer with sampling period $T_{d}$ is investigated using adaptive neural network (NN) control, and it is shown that the outputs of subsystems at device layer can track the decomposed setpoints. Then, the outputs and inputs of the device layer subsystems are sampled with sampling period $T_{u}$ at operation layer to form the index prediction, which is used to predict the overall performance index at lower frequency. Radial basis function NN is utilized as the prediction function due to its approximation ability. Then, considering the dynamics of the overall closed-loop system, nonlinear model predictive control method is proposed to guarantee the system stability and compensate the network-induced delays and packet dropouts. Finally, a continuous stirred tank reactor system is given in the simulation part to demonstrate the effectiveness of the proposed method.

567 citations


Posted Content
TL;DR: In this article, a class of lump solutions, generated from quadratic functions, to nonlinear partial differential equations are analyzed. But the basis of success is the Hirota bilinear formulation and the primary object is the class of positive multivariate quadral functions.
Abstract: Lump solutions are analytical rational function solutions localized in all directions in space. We analyze a class of lump solutions, generated from quadratic functions, to nonlinear partial differential equations. The basis of success is the Hirota bilinear formulation and the primary object is the class of positive multivariate quadratic functions. A complete determination of quadratic functions positive in space and time is given, and positive quadratic functions are characterized as sums of squares of linear functions. Necessary and sufficient conditions for positive quadratic functions to solve Hirota bilinear equations are presented, and such polynomial solutions yield lump solutions to nonlinear partial differential equations under the dependent variable transformations u=2(ln f)_x and u=2(ln f)_{xx}, where x is one spatial variable. Applications are made for a few generalized KP and BKP equations.

499 citations



Journal ArticleDOI
TL;DR: An integral sliding mode surface and observer-based adaptive sliding mode controller is designed such that the MJSs are insensitive to all admissible uncertainties and satisfy the reaching condition and the stochastic stability of the closed-loop system can be guaranteed.

474 citations


Journal ArticleDOI
26 Feb 2016-PLOS ONE
TL;DR: This work presents a data-driven strategy to identify relevant observable functions for Koopman analysis by leveraging a new algorithm to determine relevant terms in a dynamical system by ℓ1-regularized regression of the data in a nonlinear function space and demonstrates the usefulness of nonlinear observable subspaces in the design of Koop man operator optimal control laws for fully nonlinear systems using techniques from linear optimal control.
Abstract: In this wIn this work, we explore finite-dimensional linear representations of nonlinear dynamical systems by restricting the Koopman operator to an invariant subspace spanned by specially chosen observable functions. The Koopman operator is an infinite-dimensional linear operator that evolves functions of the state of a dynamical system. Dominant terms in the Koopman expansion are typically computed using dynamic mode decomposition (DMD). DMD uses linear measurements of the state variables, and it has recently been shown that this may be too restrictive for nonlinear systems. Choosing the right nonlinear observable functions to form an invariant subspace where it is possible to obtain linear reduced-order models, especially those that are useful for control, is an open challenge. Here, we investigate the choice of observable functions for Koopman analysis that enable the use of optimal linear control techniques on nonlinear problems. First, to include a cost on the state of the system, as in linear quadratic regulator (LQR) control, it is helpful to include these states in the observable subspace, as in DMD. However, we find that this is only possible when there is a single isolated fixed point, as systems with multiple fixed points or more complicated attractors are not globally topologically conjugate to a finite-dimensional linear system, and cannot be represented by a finite-dimensional linear Koopman subspace that includes the state. We then present a data-driven strategy to identify relevant observable functions for Koopman analysis by leveraging a new algorithm to determine relevant terms in a dynamical system by l1-regularized regression of the data in a nonlinear function space; we also show how this algorithm is related to DMD. Finally, we demonstrate the usefulness of nonlinear observable subspaces in the design of Koopman operator optimal control laws for fully nonlinear systems using techniques from linear optimal control.ork, we explore finite-dimensional linear representations of nonlinear dynamical systems by restricting the Koopman operator to an invariant subspace spanned by specially chosen observable functions. The Koopman operator is an infinite-dimensional linear operator that evolves functions of the state of a dynamical system. Dominant terms in the Koopman expansion are typically computed using dynamic mode decomposition (DMD). DMD uses linear measurements of the state variables, and it has recently been shown that this may be too restrictive for nonlinear systems. Choosing the right nonlinear observable functions to form an invariant subspace where it is possible to obtain linear reduced-order models, especially those that are useful for control, is an open challenge. Here, we investigate the choice of observable functions for Koopman analysis that enable the use of optimal linear control techniques on nonlinear problems. First, to include a cost on the state of the system, as in linear quadratic regulator (LQR) control, it is helpful to include these states in the observable subspace, as in DMD. However, we find that this is only possible when there is a single isolated fixed point, as systems with multiple fixed points or more complicated attractors are not globally topologically conjugate to a finite-dimensional linear system, and cannot be represented by a finite-dimensional linear Koopman subspace that includes the state. We then present a data-driven strategy to identify relevant observable functions for Koopman analysis by leveraging a new algorithm to determine relevant terms in a dynamical system by l1-regularized regression of the data in a nonlinear function space; we also show how this algorithm is related to DMD. Finally, we demonstrate the usefulness of nonlinear observable subspaces in the design of Koopman operator optimal control laws for fully nonlinear systems using techniques from linear optimal control.

Journal ArticleDOI
TL;DR: The fault detection filtering problem is solved for nonlinear switched stochastic system in the T-S fuzzy framework and the fuzzy-parameter-dependent fault detection filters are designed that guarantee the resulted error system to be mean-square exponential stable with a weighted H∞ error performance.
Abstract: In this note, the fault detection filtering problem is solved for nonlinear switched stochastic system in the T-S fuzzy framework. Our attention is concentrated on the construction of a robust fault detection technique to the nonlinear switched system with Brownian motion. Based on observer-based fault detection fuzzy filter as a residual generator, the proposed fault detection is formulated as a fuzzy filtering problem. By the utilization of the average dwell time technique and the piecewise Lyapunov function technique, the fuzzy-parameter-dependent fault detection filters are designed that guarantee the resulted error system to be mean-square exponential stable with a weighted ${\mathcal H}_{\infty}$ error performance. Then, the corresponding solvability condition for the fault detection fuzzy filter is also established by the linearization procedure technique. Finally, simulation has been presented to show the effectiveness of the proposed fault detection technique.

Journal ArticleDOI
TL;DR: In this article, the authors address magnetohydrodynamics (MHD) flow of micropolar liquid towards nonlinear stretched surface with viscous dissipation, Joule heating and convective boundary condition.

Journal ArticleDOI
TL;DR: Various nonlinear optical effects, such as the shift current in noncentrosymmetric materials, photovoltaic Hall response, and photo-induced change of order parameters under the continuous irradiation of monochromatic light are described in a unified fashion by topological quantities involving the Berry connection and Berry curvature.
Abstract: There are a variety of nonlinear optical effects including higher harmonic generations, photovoltaic effects, and nonlinear Kerr rotations. They are realized by strong light irradiation to materials that results in nonlinear polarizations in the electric field. These are of great importance in studying the physics of excited states of the system as well as for applications to optical devices and solar cells. Nonlinear properties of materials are usually described by nonlinear susceptibilities, which have complex expressions including many matrix elements and energy denominators. On the other hand, a nonequilibrium steady state under an electric field periodic in time has a concise description in terms of the Floquet bands of electrons dressed by photons. We show theoretically, using the Floquet formalism, that various nonlinear optical effects, such as the shift current in noncentrosymmetric materials, photovoltaic Hall response, and photo-induced change of order parameters under the continuous irradiation of monochromatic light, can be described in a unified fashion by topological quantities involving the Berry connection and Berry curvature. We found that vector fields defined with the Berry connections in the space of momentum and/or parameters govern the nonlinear responses. This topological view offers a route to designing nonlinear optical materials.

Journal ArticleDOI
TL;DR: In this article, the authors consider the problem of deriving an explicit approximate solution of the nonlinear power equations that describe a balanced power distribution network and propose an approximation that is linear in the active and reactive power demands of the PQ buses.
Abstract: We consider the problem of deriving an explicit approximate solution of the nonlinear power equations that describe a balanced power distribution network. We give sufficient conditions for the existence of a practical solution to the power flow equations, and we propose an approximation that is linear in the active and reactive power demands of the PQ buses. For this approximation, which is valid for generic power line impedances and grid topology, we derive a bound on the approximation error as a function of the grid parameters. We illustrate the quality of the approximation via simulations, we show how it can also model the presence of voltage controlled (PV) buses, and we discuss how it generalizes the DC power flow model to lossy networks.

Journal Article
TL;DR: In this article, the authors propose a sparse regression method for discovering the governing partial differential equation(s) of a given system by time series measurements in the spatial domain, which relies on sparsitypromoting techniques to select the nonlinear and partial derivative terms of the governing equations that most accurately represent the data, bypassing a combinatorially large search through all possible candidate models.
Abstract: We propose a sparse regression method capable of discovering the governing partial differential equation(s) of a given system by time series measurements in the spatial domain. The regression framework relies on sparsity-promoting techniques to select the nonlinear and partial derivative terms of the governing equations that most accurately represent the data, bypassing a combinatorially large search through all possible candidate models. The method balances model complexity and regression accuracy by selecting a parsimonious model via Pareto analysis. Time series measurements can be made in an Eulerian framework, where the sensors are fixed spatially, or in a Lagrangian framework, where the sensors move with the dynamics. The method is computationally efficient, robust, and demonstrated to work on a variety of canonical problems spanning a number of scientific domains including Navier-Stokes, the quantum harmonic oscillator, and the diffusion equation. Moreover, the method is capable of disambiguating between potentially nonunique dynamical terms by using multiple time series taken with different initial data. Thus, for a traveling wave, the method can distinguish between a linear wave equation and the Korteweg–de Vries equation, for instance. The method provides a promising new technique for discovering governing equations and physical laws in parameterized spatiotemporal systems, where first-principles derivations are intractable.

Book
09 Aug 2016
TL;DR: In this paper, the authors explore the modeling of conservation and balance laws of one-dimensional hyperbolic systems using partial differential equations and demonstrate the use of Lyapunov functions in this type of analysis.
Abstract: This monograph explores the modeling of conservation and balance laws of one-dimensional hyperbolic systems using partial differential equations. It presents typical examples of hyperbolic systems for a wide range of physical engineering applications, allowing readers to understand the concepts in whichever setting is most familiar to them. With these examples, it also illustrates how control boundary conditions may be defined for the most commonly used control devices. The authors begin with the simple case of systems of two linear conservation laws and then consider the stability of systems under more general boundary conditions that may be differential, nonlinear, or switching. They then extend their discussion to the case of nonlinear conservation laws and demonstrate the use of Lyapunov functions in this type of analysis. Systems of balance laws are considered next, starting with the linear variety before they move on to more general cases of nonlinear ones. They go on to show how the problem of boundary stabilization of systems of two balance laws by both full-state and dynamic output feedback in observer-controller form is solved by using a “backstepping” method, in which the gains of the feedback laws are solutions of an associated system of linear hyperbolic PDEs. The final chapter presents a case study on the control of navigable rivers to emphasize the main technological features that may occur in real live applications of boundary feedback control. Stability and Boundary Stabilization of 1-D Hyperbolic Systems will be of interest to graduate students and researchers in applied mathematics and control engineering. The wide range of applications it discusses will help it to have as broad an appeal within these groups as possible.

Proceedings ArticleDOI
06 Jul 2016
TL;DR: This work introduces Exponential Control Barrier Functions as means to enforce strict state-dependent high relative degree safety constraints for nonlinear systems and develops a systematic design method that enables creating the Exponential CBFs for non linear systems making use of tools from linear control theory.
Abstract: We introduce Exponential Control Barrier Functions as means to enforce strict state-dependent high relative degree safety constraints for nonlinear systems. We also develop a systematic design method that enables creating the Exponential CBFs for nonlinear systems making use of tools from linear control theory. The proposed control design is numerically validated on a relative degree 6 linear system (the serial cart-spring system) and on a relative degree 4 nonlinear system (the two-link pendulum with elastic actuators.)

Journal ArticleDOI
TL;DR: This paper investigates an adaptive fuzzy tracking control design problem for single-input and single-output uncertain nonstrict feedback nonlinear systems and proposes both adaptive fuzzy state feedback and observer-based output feedback control designs.
Abstract: This paper investigates an adaptive fuzzy tracking control design problem for single-input and single-output uncertain nonstrict feedback nonlinear systems. For the cases of the states measurable and the states immeasurable, fuzzy logic systems are separately adopted to approximate the unknown nonlinear functions or model the uncertain nonlinear systems. In the unified framework of adaptive backstepping control design, both adaptive fuzzy state feedback and observer-based output feedback control design schemes are proposed. The stability of the closed-loop systems is proved by using Lyapunov function theory. The simulation examples are provided to confirm the effectiveness of the proposed control methods.

Journal ArticleDOI
TL;DR: In this paper, a hybrid fuzzy adaptive output feedback control design approach is proposed for a class of multiinput and multioutput strict-feedback nonlinear systems with unknown time-varying delays, unmeasured states, and input saturation.
Abstract: In this paper, a hybrid fuzzy adaptive output feedback control design approach is proposed for a class of multiinput and multioutput strict-feedback nonlinear systems with unknown time-varying delays, unmeasured states, and input saturation. First, fuzzy logic systems are employed to approximate unknown nonlinear functions in the system. Next, a smooth function is used to approximate the input saturation and an adaptive fuzzy state observer is constructed to solve the problem of unmeasured states. Based on the designed adaptive fuzzy state observer, a serial-parallel estimation model is established. By applying adaptive fuzzy dynamic surface control technique and utilizing the prediction error between the system states observer model and the serial–parallel estimation model, a new fuzzy controller with the composite parameters adaptive laws is developed based on Lyapunov–Krasovskii functional. It is proved that all variables of the closed-loop system are bounded and the system outputs can follow the given bounded reference signals as close as possible. A simulation example is provided to further show the effectiveness of this novel control scheme.

Journal ArticleDOI
01 Sep 2016-Calcolo
TL;DR: In this article, the first integral method was used to construct exact solutions of the Wu-Zhang system, which is based on the ring theory of commutative algebra, and the results obtained confirm that the proposed method is an efficient technique for analytic treatment of a wide variety of nonlinear conformable time-fractional partial differential equations.
Abstract: In this paper, the first integral method is used to construct exact solutions of the time-fractional Wu---Zhang system. Fractional derivatives are described by conformable fractional derivative. This method is based on the ring theory of commutative algebra. The results obtained confirm that the proposed method is an efficient technique for analytic treatment of a wide variety of nonlinear conformable time-fractional partial differential equations.

Journal ArticleDOI
TL;DR: Two approaches are developed for reliable fuzzy static output feedback controller design of the underlying fuzzy PDE systems and it is shown that the controller gains can be obtained by solving a set of finite linear matrix inequalities based on the finite-difference method in space.
Abstract: This paper investigates the problem of output feedback robust $\mathscr{H}_{\infty }$ control for a class of nonlinear spatially distributed systems described by first-order hyperbolic partial differential equations (PDEs) with Markovian jumping actuator faults. The nonlinear hyperbolic PDE systems are first expressed by Takagi–Sugeno fuzzy models with parameter uncertainties, and then, the objective is to design a reliable distributed fuzzy static output feedback controller guaranteeing the stochastic exponential stability of the resulting closed-loop system with certain $\mathscr{H}_{\infty }$ disturbance attenuation performance. Based on a Markovian Lyapunov functional combined with some matrix inequality convexification techniques, two approaches are developed for reliable fuzzy static output feedback controller design of the underlying fuzzy PDE systems. It is shown that the controller gains can be obtained by solving a set of finite linear matrix inequalities based on the finite-difference method in space. Finally, two examples are presented to demonstrate the effectiveness of the proposed methods.

Journal ArticleDOI
01 Aug 2016
TL;DR: A new method for solving fuzzy differential equations based on the reproducing kernel theory under strongly generalized differentiability is presented, showing potentiality, generality, and superiority of the method as compared with other well-known methods.
Abstract: Modeling of uncertainty differential equations is very important issue in applied sciences and engineering, while the natural way to model such dynamical systems is to use fuzzy differential equations. In this paper, we present a new method for solving fuzzy differential equations based on the reproducing kernel theory under strongly generalized differentiability. The analytic and approximate solutions are given with series form in terms of their parametric form in the space $$W_2^2 [a,b]\oplus W_2^2 [a,b].$$W22[a,b]źW22[a,b]. The method used in this paper has several advantages; first, it is of global nature in terms of the solutions obtained as well as its ability to solve other mathematical, physical, and engineering problems; second, it is accurate, needs less effort to achieve the results, and is developed especially for the nonlinear cases; third, in the proposed method, it is possible to pick any point in the interval of integration and as well the approximate solutions and their derivatives will be applicable; fourth, the method does not require discretization of the variables, and it is not effected by computation round off errors and one is not faced with necessity of large computer memory and time. Results presented in this paper show potentiality, generality, and superiority of our method as compared with other well-known methods.

Journal ArticleDOI
TL;DR: First and second order temporal approximation schemes based on the “Invariant Energy Quadratization” method are developed, where all nonlinear terms are treated semi-explicitly, leading to a symmetric positive definite linear system to be solved at each time step.

Journal ArticleDOI
TL;DR: In this paper, a size-dependent beam model is proposed for nonlinear free vibration of a functionally graded (FG) nanobeam with immovable ends based on the nonlocal strain gradient theory (NLSGT) and Euler-Bernoulli beam theory in conjunction with the von-Karman's geometric nonlinearity.

Journal ArticleDOI
TL;DR: In this article, a nonintrusive projection-based model reduction approach for full models based on time-dependent partial differential equations is presented, which is applicable to full models that are linear in the state or have a low-order polynomial nonlinear term.

Journal ArticleDOI
TL;DR: In this article, the MHD stagnation point flow of a viscoelastic nanofluid towards a stretching surface with nonlinear radiative effects is studied by employing convective condition at the stretching surface.

Journal ArticleDOI
TL;DR: The closed-loop stability of the adaptive control system is rigorously proved via Lyapunov analysis and the satisfactory tracking performance is achieved under the integrated effects of unknown dead zone, actuator fault, and unknown external disturbances.
Abstract: In this paper, an adaptive neural fault-tolerant control scheme is proposed and analyzed for a class of uncertain nonlinear large-scale systems with unknown dead zone and external disturbances. To tackle the unknown nonlinear interaction functions in the large-scale system, the radial basis function neural network (RBFNN) is employed to approximate them. To further handle the unknown approximation errors and the effects of the unknown dead zone and external disturbances, integrated as the compounded disturbances, the corresponding disturbance observers are developed for their estimations. Based on the outputs of the RBFNN and the disturbance observer, the adaptive neural fault-tolerant control scheme is designed for uncertain nonlinear large-scale systems by using a decentralized backstepping technique. The closed-loop stability of the adaptive control system is rigorously proved via Lyapunov analysis and the satisfactory tracking performance is achieved under the integrated effects of unknown dead zone, actuator fault, and unknown external disturbances. Simulation results of a mass–spring–damper system are given to illustrate the effectiveness of the proposed adaptive neural fault-tolerant control scheme for uncertain nonlinear large-scale systems.

Journal ArticleDOI
Xiaodi Li1, Jianhong Wu1
TL;DR: In this work, general and applicable results for uniform stability, uniform asymptotic stability and exponential stability of the systems with state-dependent delayed impulses are established by using the impulsive control theory and some comparison arguments.

Journal ArticleDOI
TL;DR: In this article, wave propagation analysis of an inhomogeneous functionally graded (FG) nanoplate subjected to nonlinear thermal loading is investigated by the means of nonlocal strain gradient theory.