Topic

# Nonuniform sampling

About: Nonuniform sampling is a research topic. Over the lifetime, 1973 publications have been published within this topic receiving 43309 citations.

##### Papers published on a yearly basis

##### Papers

More filters

••

[...]

Clarkson College

^{1}TL;DR: In this paper, the authors present the various contributions made for the sampling theorems with the necessary mathematical details to make it self-contained, including sampling for functions of more than one variable, random processes, nonuniform sampling, nonband-limited functions, implicit sampling, sampling with the function and its derivatives as suggested by Shannon in his original paper, and sampling for general integral transforms.

Abstract: It has been almost thirty years since Shannon introduced the sampling theorem to communications theory. In this review paper we will attempt to present the various contributions made for the sampling theorems with the necessary mathematical details to make it self-contained. We will begin by a clear statement of Shannon's sampling theorem followed by its applied interpretation for time-invariant systems. Then we will review its origin as Whittaker's interpolation series. The extensions will include sampling for functions of more than one variable, random processes, nonuniform sampling, nonband-limited functions, implicit sampling, generalized functions (distributions), sampling with the function and its derivatives as suggested by Shannon in his original paper, and sampling for general integral transforms. Also the conditions on the functions to be sampled will be summarized. The error analysis of the various sampling expansions, including specific error bounds for the truncation, aliasing, jitter and parts of various other errors will be discussed and summarized. This paper will be concluded by searching the different recent applications of the sampling theorems in other fields, besides communications theory. These include optics, crystallography, time-varying systems, boundary value problems, spline approximation, special functions, and the Fourier and other discrete transforms.

1,462 citations

••

[...]

TL;DR: The standard sampling paradigm is extended for a presentation of functions in the more general class of "shift-in-variant" function spaces, including splines and wavelets, and variations of sampling that can be understood from the same unifying perspective are reviewed.

Abstract: This paper presents an account of the current state of sampling, 50 years after Shannon's formulation of the sampling theorem. The emphasis is on regular sampling, where the grid is uniform. This topic has benefitted from a strong research revival during the past few years, thanks in part to the mathematical connections that were made with wavelet theory. To introduce the reader to the modern, Hilbert-space formulation, we reinterpret Shannon's sampling procedure as an orthogonal projection onto the subspace of band-limited functions. We then extend the standard sampling paradigm for a presentation of functions in the more general class of "shift-in-variant" function spaces, including splines and wavelets. Practically, this allows for simpler-and possibly more realistic-interpolation models, which can be used in conjunction with a much wider class of (anti-aliasing) prefilters that are not necessarily ideal low-pass. We summarize and discuss the results available for the determination of the approximation error and of the sampling rate when the input of the system is essentially arbitrary; e.g., nonbandlimited. We also review variations of sampling that can be understood from the same unifying perspective. These include wavelets, multiwavelets, Papoulis generalized sampling, finite elements, and frames. Irregular sampling and radial basis functions are briefly mentioned.

1,384 citations

••

[...]

TL;DR: This paper presents an interpolation method for the nonuniform FT that is optimal in the min-max sense of minimizing the worst-case approximation error over all signals of unit norm and indicates that the proposed method easily generalizes to multidimensional signals.

Abstract: The fast Fourier transform (FFT) is used widely in signal processing for efficient computation of the FT of finite-length signals over a set of uniformly spaced frequency locations. However, in many applications, one requires nonuniform sampling in the frequency domain, i.e., a nonuniform FT. Several papers have described fast approximations for the nonuniform FT based on interpolating an oversampled FFT. This paper presents an interpolation method for the nonuniform FT that is optimal in the min-max sense of minimizing the worst-case approximation error over all signals of unit norm. The proposed method easily generalizes to multidimensional signals. Numerical results show that the min-max approach provides substantially lower approximation errors than conventional interpolation methods. The min-max criterion is also useful for optimizing the parameters of interpolation kernels such as the Kaiser-Bessel function.

1,104 citations

••

[...]

TL;DR: In this paper, it is shown that Lebesgue sampling gives better performance for some simple systems than traditional Riemann sampling, which is an analog of integration theory and is called event-based sampling.

Abstract: The normal approach to digital control is to sample periodically in time. Using an analog of integration theory we can call this Riemann sampling. Lebesgue sampling or event based sampling is an alternative to Riemann sampling. It means that signals are sampled only when measurements pass certain limits. In this paper it is shown that Lebesgue sampling gives better performance for some simple systems.

925 citations

••

[...]

TL;DR: A unified framework for uniform and nonuniform sampling and reconstruction in shift-invariant subspaces is provided by bringing together wavelet theory, frame theory, reproducing kernel Hilbert spaces, approximation theory, amalgam spaces, and sampling.

Abstract: This article discusses modern techniques for nonuniform sampling and reconstruction of functions in shift-invariant spaces. It is a survey as well as a research paper and provides a unified framework for uniform and nonuniform sampling and reconstruction in shift-invariant subspaces by bringing together wavelet theory, frame theory, reproducing kernel Hilbert spaces, approximation theory, amalgam spaces, and sampling. Inspired by applications taken from communication, astronomy, and medicine, the following aspects will be emphasized: (a) The sampling problem is well defined within the setting of shift-invariant spaces. (b) The general theory works in arbitrary dimension and for a broad class of generators. (c) The reconstruction of a function from any sufficiently dense nonuniform sampling set is obtained by efficient iterative algorithms. These algorithms converge geometrically and are robust in the presence of noise. (d) To model the natural decay conditions of real signals and images, the sampling theory is developed in weighted L p-spaces.

725 citations