scispace - formally typeset
Search or ask a question
Topic

Notch proteins

About: Notch proteins is a research topic. Over the lifetime, 1571 publications have been published within this topic receiving 165498 citations. The topic is also known as: Notch domain, protein family & IPR000800.


Papers
More filters
Journal ArticleDOI
30 Apr 1999-Science
TL;DR: Notch signaling defines an evolutionarily ancient cell interaction mechanism, which plays a fundamental role in metazoan development, providing a general developmental tool to influence organ formation and morphogenesis.
Abstract: Notch signaling defines an evolutionarily ancient cell interaction mechanism, which plays a fundamental role in metazoan development. Signals exchanged between neighboring cells through the Notch receptor can amplify and consolidate molecular differences, which eventually dictate cell fates. Thus, Notch signals control how cells respond to intrinsic or extrinsic developmental cues that are necessary to unfold specific developmental programs. Notch activity affects the implementation of differentiation, proliferation, and apoptotic programs, providing a general developmental tool to influence organ formation and morphogenesis.

5,834 citations

Journal ArticleDOI
17 Apr 2009-Cell
TL;DR: This Review highlights recent studies in Notch signaling that reveal new molecular details about the regulation of ligand-mediated receptor activation, receptor proteolysis, and target selection.

3,120 citations

Journal ArticleDOI
TL;DR: Although the intracellular transduction of the Notch signal is remarkably simple, with no secondary messengers, this pathway functions in an enormous diversity of developmental processes and its dysfunction is implicated in many cancers.
Abstract: A small number of signalling pathways are used iteratively to regulate cell fates, cell proliferation and cell death in development. Notch is the receptor in one such pathway, and is unusual in that most of its ligands are also transmembrane proteins; therefore signalling is restricted to neighbouring cells. Although the intracellular transduction of the Notch signal is remarkably simple, with no secondary messengers, this pathway functions in an enormous diversity of developmental processes and its dysfunction is implicated in many cancers.

2,450 citations

Journal ArticleDOI
08 Apr 1999-Nature
TL;DR: It is reported that, in mammalian cells, PS1 deficiency also reduces the proteolytic release of NICD from a truncated Notch construct, thus identifying the specific biochemical step of the Notch signalling pathway that is affected by PS1.
Abstract: Signalling through the receptor protein Notch, which is involved in crucial cell-fate decisions during development, requires ligand-induced cleavage of Notch. This cleavage occurs within the predicted transmembrane domain, releasing the Notch intracellular domain (NICD), and is reminiscent of gamma-secretase-mediated cleavage of beta-amyloid precursor protein (APP), a critical event in the pathogenesis of Alzheimer's disease. A deficiency in presenilin-1 (PS1) inhibits processing of APP by gamma-secretase in mammalian cells, and genetic interactions between Notch and PS1 homologues in Caenorhabditis elegans indicate that the presenilins may modulate the Notch signalling pathway. Here we report that, in mammalian cells, PS1 deficiency also reduces the proteolytic release of NICD from a truncated Notch construct, thus identifying the specific biochemical step of the Notch signalling pathway that is affected by PS1. Moreover, several gamma-secretase inhibitors block this same step in Notch processing, indicating that related protease activities are responsible for cleavage within the predicted transmembrane domains of Notch and APP. Thus the targeting of gamma-secretase for the treatment of Alzheimer's disease may risk toxicity caused by reduced Notch signalling.

2,078 citations

Journal ArticleDOI
28 May 1998-Nature
TL;DR: It is shown that signalling by a constitutively active membrane-bound Notch-1 protein requires the proteolytic release of the Notch intracellular domain (NICD), which interacts preferentially with CSL.
Abstract: Notch proteins are ligand-activated transmembrane receptors involved in cell-fate selection throughout development1,2,3. No known enzymatic activity is contained within Notch and the molecular mechanism by which it transduces signals across the cell membrane is poorly understood. In many instances, Notch activation results in transcriptional changes in the nucleus through an association with members of the CSL family of DNA-binding proteins (where CSL stands for CBF1, Su(H), Lag-1)1,2,3,4. As Notch is located in the plasma membrane and CSL is a nuclear protein, two models have been proposed to explain how they interact (Fig. 1) . The first suggests that the two interact transiently at the membrane1,5,6,7. The second postulates that Notch is cleaved by a protease, enabling the cleaved fragment to enter the nucleus6,8,9,10,11,12,13,14. Here we show that signalling by a constitutively active membrane-bound Notch-1 protein requires the proteolytic release of the Notch intracellular domain (NICD), which interacts preferentially with CSL. Very small amounts of NICD are active, explaining why it is hard to detect in the nucleus in vivo. We also show that it is ligand binding that induces release of NICD.

1,625 citations


Network Information
Related Topics (5)
Cellular differentiation
90.9K papers, 6M citations
88% related
Transcription factor
82.8K papers, 5.4M citations
87% related
Regulation of gene expression
85.4K papers, 5.8M citations
87% related
Chromatin
50.7K papers, 2.7M citations
86% related
Signal transduction
122.6K papers, 8.2M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202312
202231
202110
202011
201915
201819