scispace - formally typeset
Search or ask a question
Topic

NS5B

About: NS5B is a research topic. Over the lifetime, 1314 publications have been published within this topic receiving 59534 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The establishment of this novel genotype 3a replicon system, in conjunction with those derived from other genotypes, will aid the development of treatment regimens for all genotypes of HCV.

28 citations

Journal ArticleDOI
TL;DR: Results indicated that impairment of assembly function in 5B-741 was independent of RNA accumulation levels and agreed with the observations from the full-length mutant and revertant genomes.
Abstract: A novel mutant of bovine viral diarrhea virus (BVDV) was found with a virion assembly phenotype attributable to an insertion into the NS5B polymerase locus. This mutant, termed 5B-741, was engineered by reverse genetics to express NS5B with a C-terminal peptide tag of 22 amino acids. Electroporation of bovine cells with genomic RNA from this mutant showed levels RNA synthesis which were regarded as sufficient for infectivity, yet infectious virions were not produced. Pseudorevertants of mutant 5B-741 that released infectious virions and formed plaques revealed a single nucleotide change (T12369C). This change resulted in a leucine-to-proline substitution within the NS5B tag (L726P). Genetic analysis revealed that indeed a single nucleotide change encoding proline at NS5B position 726 in the pseudorevertant polyprotein mediated recovery of virion assembly function without improving genomic RNA accumulation levels. A subgenomic BVDV reporter replicon (rNS3-5B) was used to analyze the consequences of alterations of the genomic region encoding the NS5B C terminus on replication and assembly. Interestingly, rNS3-5B-L726P (revertant) replicated with the same efficiency as the rNS3-5B-741 mutant but produced 10 times more virions in a trans-packaging assay. These results indicated that impairment of assembly function in 5B-741 was independent of RNA accumulation levels and agreed with the observations from the full-length mutant and revertant genomes. Finally, we recapitulated the packaging defect of 5B-741 with a vaccinia virus expression system to eliminate possible unwanted interactions between the helper virus and the packaged replicon. Taken together, these studies revealed an unexpected role of NS5B in infectious virion assembly.

28 citations

Journal ArticleDOI
TL;DR: This review focuses on the recent advances in discovery, mechanism of action studies and biological characterization of several distinct classes of potent inhibitors for NS5B RdRp.
Abstract: Lack of highly effective and safe therapeutics for hepatitis C virus (HCV) infection provides an opportunity as well as a challenge to discover novel and potent anti-HCV drugs. HCV NS5B RNA-dependent RNA polymerase (RdRp) is responsible for viral genome replication and thus constitutes a valid target for therapeutic intervention. To date, numerous HCV NS5B RdRp inhibitors have been discovered. This review focuses on the recent advances in discovery, mechanism of action studies and biological characterization of several distinct classes of potent inhibitors for NS5B RdRp. The clinical efficacy and developmental status of several promising compounds are also outlined.

28 citations

Journal ArticleDOI
TL;DR: Using the homology modeling, molecular dynamics, and molecular docking techniques, a representative set of models of the hepatitis C virus p7 ion channels are built, analyzed the inhibitor binding sites, and identified a number of potential broad-spectrum inhibitor structures targeting them.

28 citations

Journal ArticleDOI
09 Jan 2014-PLOS ONE
TL;DR: A comprehensive picture of inhibition by compounds binding to thumb site II emerges: inhibitor binding provides stabilization of the entire polymerase in an inactive, closed conformation, propagated via coupled interactions between the C-terminal tail and β-loop.
Abstract: Elucidation of the mechanism of action of the HCV NS5B polymerase thumb site II inhibitors has presented a challenge. Current opinion holds that these allosteric inhibitors stabilize the closed, inactive enzyme conformation, but how this inhibition is accomplished mechanistically is not well understood. Here, using a panel of NS5B proteins with mutations in key regulatory motifs of NS5B – the C-terminal tail and β-loop – in conjunction with a diverse set of NS5B allosteric inhibitors, we show that thumb site II inhibitors possess a distinct mechanism of action. A combination of enzyme activity studies and direct binding assays reveals that these inhibitors require both regulatory elements to maintain the polymerase inhibitory activity. Removal of either element has little impact on the binding affinity of thumb site II inhibitors, but significantly reduces their potency. NS5B in complex with a thumb site II inhibitor displays a characteristic melting profile that suggests stabilization not only of the thumb domain but also the whole polymerase. Successive truncations of the C-terminal tail and/or removal of the β-loop lead to progressive destabilization of the protein. Furthermore, the thermal unfolding transitions characteristic for thumb site II inhibitor – NS5B complex are absent in the inhibitor – bound constructs in which interactions between C-terminal tail and β-loop are abolished, pointing to the pivotal role of both regulatory elements in communication between domains. Taken together, a comprehensive picture of inhibition by compounds binding to thumb site II emerges: inhibitor binding provides stabilization of the entire polymerase in an inactive, closed conformation, propagated via coupled interactions between the C-terminal tail and β-loop.

28 citations


Network Information
Related Topics (5)
Hepatitis C virus
32.2K papers, 1.1M citations
88% related
Viral replication
33.4K papers, 1.6M citations
86% related
Hepatitis B virus
39.1K papers, 1.2M citations
85% related
Interferon
28.9K papers, 1.2M citations
83% related
Virus
136.9K papers, 5.2M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202310
202258
202128
202033
201943
201842