scispace - formally typeset
Search or ask a question
Topic

NS5B

About: NS5B is a research topic. Over the lifetime, 1314 publications have been published within this topic receiving 59534 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: GSK5852 was more potent than HCV-796, an earlier inhibitor in this class, and showed greater reductions in HCV RNA during long-term treatment of replicons, but its superior resistance profile suggests that it could be an attractive component of an all-oral regimen for treating HCV.
Abstract: GSK2485852 (referred to here as GSK5852) is a hepatitis C virus (HCV) NS5B polymerase inhibitor with 50% effective concentrations (EC50s) in the low nanomolar range in the genotype 1 and 2 subgenomic replicon system as well as the infectious HCV cell culture system. We have characterized the antiviral activity of GSK5852 using chimeric replicon systems with NS5B genes from additional genotypes as well as NS5B sequences from clinical isolates of patients infected with HCV of genotypes 1a and 1b. The inhibitory activity of GSK5852 remained unchanged in these intergenotypic and intragenotypic replicon systems. GSK5852 furthermore displays an excellent resistance profile and shows a <5-fold potency loss across the clinically important NS5B resistance mutations P495L, M423T, C316Y, and Y448H. Testing of a diverse mutant panel also revealed a lack of cross-resistance against known resistance mutations in other viral proteins. Data from both the newer 454 sequencing method and traditional population sequencing showed a pattern of mutations arising in the NS5B RNA-dependent RNA polymerase in replicon cells exposed to GSK5852. GSK5852 was more potent than HCV-796, an earlier inhibitor in this class, and showed greater reductions in HCV RNA during long-term treatment of replicons. GSK5852 is similar to HCV-796 in its activity against multiple genotypes, but its superior resistance profile suggests that it could be an attractive component of an all-oral regimen for treating HCV.

15 citations

Journal ArticleDOI
TL;DR: These findings demonstrate the antiviral relevance of the proteins induced by interferon, PKR and RNase L during expression from a VV recombinant of the HCV polyprotein in human cell lines, and highlights the importance of the IFN system as a protective mechanism against HCV infection.
Abstract: Hepatitis C virus (HCV) infection is of growing concern in public health with around 350 million chronically infected individuals worldwide. Although the IFN-α/rivabirin is the only approved therapy with 10–30% clinical efficacy, the protective molecular mechanism involved during the treatment is still unknown. To analyze the effect of HCV polyprotein expression on the antiviral response of the host, we developed a novel vaccinia virus (VV)-based delivery system (VT7-HCV7.9) where structural and nonstructural (except part of NS5B) proteins of HCV ORF from genotype 1b are efficiently expressed and produced, and timely regulated in mammalian cell lines. Regulated transcript production and viral polypeptide processing was demonstrated in various cell lines infected with the recombinant VT7-HCV7.9, indicating that the cellular and viral proteolytic machineries are functional within these cells. The inducible expression of the HCV polyprotein by VV inhibits the synthesis of both host and viral proteins over the time and also induces apoptosis in HeLa and HepG2-infected cells. These effects occur accompanying with the phosphorylation of the translation initiation factor eIF-2α. In cells co-infected with VT7-HCV7.9 and a recombinant VV expressing the dominant negative eIF-2α-S51A mutant in the presence of the inductor isopropyl-thiogalactoside (IPTG), protein synthesis is rescued. The IFN-inducible protein kinase PKR is responsible for the translational block, as demonstrated with PKR-/- and PKR+/+ cell lines. However, apoptosis induced by VT7-HCV7.9 is mediated by the RNase L pathway, in a PKR-independent manner. These findings demonstrate the antiviral relevance of the proteins induced by interferon, PKR and RNase L during expression from a VV recombinant of the HCV polyprotein in human cell lines. HCV polyprotein expression caused a severe cytopathological effect in human cells as a result of inhibition of protein synthesis and apoptosis induction, triggered by the activation of the IFN-induced enzymes PKR and RNase L systems. Thus, the virus-cell system described here highlights the relevance of the IFN system as a protective mechanism against HCV infection.

15 citations

Journal ArticleDOI
Haekyung Lee1, Ying Liu1, Edison Mejia1, Aniko V. Paul1, Eckard Wimmer1 
TL;DR: It is suggested that anchoring NS5B to membranes is necessary but that the amino acid sequence of the anchor per se does not require HCV origin, and that specific interactions between the NS5 B hydrophobic domain and other membrane-bound factors may not play a decisive role in HCV replication.
Abstract: Replication of the plus-stranded RNA genome of hepatitis C virus (HCV) occurs in a membrane-bound replication complex consisting of viral and cellular proteins and viral RNA. NS5B, the RNA polymerase of HCV, is anchored to the membranes via a C-terminal 20-amino-acid-long hydrophobic domain, which is flanked on each side by a highly conserved positively charged arginine. Using a genotype 1b subgenomic replicon (V. Lohmann, F. Korner, J. O. Koch, U. Herian, L. Theilmann, and R. Bartensclager, Science 285:110-113, 1999), we determined the effect of mutations of some highly conserved residues in this domain. The replacement of arginine 570 with alanine completely abolished the colony-forming ability by the replicon, while a R591A change was found to be highly detrimental to replication, viability, and membrane binding by the mutant NS5B protein. Mutations of two other highly conserved amino acids (L588A and P589A) reduced but did not eliminate colony formation. It was of interest, if specific amino acid residues play a role in membrane anchoring of NS5B and replication, to determine whether a complete exchange of the NS5B hydrophobic domain with a domain totally unrelated to NS5B would ablate replication. We selected the 22-amino-acid-long hydrophobic domain of poliovirus polypeptide 3A that is known to adopt a transmembrane configuration, thereby anchoring 3A to membranes. Surprisingly, either partial or full replacement of the NS5B hydrophobic domain with the anchor sequences of poliovirus polypeptide 3A resulted in the replication of replicons whose colony-forming abilities were reduced compared to that of the wild-type replicon. Upon continued passage of the replicon in Huh-7 cells in the presence of neomycin, the replication efficiency of the replicon increased. However, the sequence of the poliovirus polypeptide 3A hydrophobic domain, in the context of the subgenomic HCV replicon, was stably maintained throughout 40 passages. Our results suggest that anchoring NS5B to membranes is necessary but that the amino acid sequence of the anchor per se does not require HCV origin. This suggests that specific interactions between the NS5B hydrophobic domain and other membrane-bound factors may not play a decisive role in HCV replication.

15 citations

Journal Article
TL;DR: The interactions of NS5B with other viral proteins might play roles in cellular trafficking, signal transduction, and RNA polymerization, as well as the regulation of replication/translation processes.
Abstract: Since its identification in 1989, hepatitis C virus has been the subject of extensive research. The biology of the virus and the development of antiviral drugs are closely related. The RNA polymerase activity of nonstructural protein 5B was first demonstrated in 1996. NS5B is believed to localize to the perinuclear region, forming a replicase complex with other viral proteins. It has a typical polymerase structure with thumb, palm, and finger domains encircling the active site. A de novo replication initiation mechanism has been suggested. To date, many small molecule inhibitors are known including nucleoside analogues, non-nucleoside analogues, and pyrophosphate mimics. NS5B interacts with other viral proteins such as core, NS3, 4A, 4B, and 5A. The helicase activity of NS3 seems necessary for RNA strand unwinding during replication, with other nonstructural proteins performing modulatory roles. Cellular proteins interacting with NS5B include VAMP-associated proteins, heIF4AII, hPLIC1, nucleolin, PRK2, a-actinin, and p68 helicase. The interactions of NS5B with these proteins might play roles in cellular trafficking, signal transduction, and RNA polymerization, as well as the regulation of replication/translation processes.

15 citations

Journal ArticleDOI
TL;DR: Differences between NS5B nonsynonymous (dN) and synonymous (dS) mutation rates were positively correlated with CD4 cell count, while nonsynonym mutations were strongly correlated with reduced replication in vivo.
Abstract: There are limited data on diversity within the hepatitis C virus polymerase (NS5B). In concordance with its key functional role during the life cycle, NS5B intrapatient variability was low. Moreover, differences between NS5B nonsynonymous (dN) and synonymous (dS) mutation rates (dN - dS) were positively correlated with CD4 cell count, while nonsynonymous mutations were strongly correlated with reduced replication in vivo.

15 citations


Network Information
Related Topics (5)
Hepatitis C virus
32.2K papers, 1.1M citations
88% related
Viral replication
33.4K papers, 1.6M citations
86% related
Hepatitis B virus
39.1K papers, 1.2M citations
85% related
Interferon
28.9K papers, 1.2M citations
83% related
Virus
136.9K papers, 5.2M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202310
202258
202128
202033
201943
201842