scispace - formally typeset
Search or ask a question
Topic

NSP1

About: NSP1 is a research topic. Over the lifetime, 248 publications have been published within this topic receiving 12044 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Findings point to a common evolutionary origin of GO34 and bovine, ovine, antelope, guanaco and human G6P[14] GARs, although phylogenetically GO34 is not particularly closely related to any other rotavirus strains known to date.
Abstract: This study reports the first complete genome sequence of a caprine group A rotavirus (GAR) strain, GO34. The VP7-VP4-VP6-VP1-VP2-VP3-NSP1-NSP2-NSP3-NSP4-NSP5 genes of strain GO34, detected in Bangladesh, were assigned to the G6-P[1]-I2-R2-C2-M2-A11-N2-T6-E2-H3 genotypes, respectively. Strain GO34 was closely related to the VP4, VP6–7 and NSP4–5 genes of bovine GARs and the NSP1 gene of GO34 to an ovine GAR. Strain GO34 shared low nucleotide sequence identities (<90 %) with VP2–3 genes of other GARs, and was equally related to NSP3 genes of human, ruminant and camelid strains. The VP1, VP6 and NSP2 genes of strain GO34 also exhibited a close genetic relatedness to human G2, G6, G8 and G12 DS-1-like GARs, whereas the NSP1 of GO34 was also closely related to human G6P[14] strains. All these findings point to a common evolutionary origin of GO34 and bovine, ovine, antelope, guanaco and human G6P[14] GARs, although phylogenetically GO34 is not particularly closely related to any other rotavirus strains known to date.

50 citations

Journal ArticleDOI
TL;DR: There is a direct relationship between the replication efficiencies of different rotavirus strains in MEFs and strain-related variations in NSP1-mediated antagonism of the type I IFN response.
Abstract: Rotavirus NSP1 has been shown to function as an E3 ubiquitin ligase that mediates proteasome-dependent degradation of interferon (IFN) regulatory factors (IRF), including IRF3, -5, and -7, and suppresses the cellular type I IFN response. However, the effect of rotavirus NSP1 on viral replication is not well defined. Prior studies used genetic analysis of selected reassortants to link NSP1 with host range restriction in the mouse, suggesting that homologous and heterologous rotaviruses might use their different abilities to antagonize the IFN response as the basis of their host tropisms. Using a mouse embryonic fibroblast (MEF) model, we demonstrate that heterologous bovine (UK and NCDV) and porcine (OSU) rotaviruses fail to effectively degrade cellular IRF3, resulting in IRF3 activation and beta IFN (IFN-β) secretion. As a consequence of this failure, replication of these viruses is severely restricted in IFN-competent wild-type, but not in IFN-deficient (IFN-α/β/γ receptor- or STAT1-deficient) MEFs. On the other hand, homologous murine rotaviruses (ETD or EHP) or the heterologous simian rotavirus (rhesus rotavirus [RRV]) efficiently degrade cellular IRF3, diminish IRF3 activation and IFN-β secretion and are not replication restricted in wild-type MEFs. Genetic reassortant analysis between UK and RRV maps the distinctive phenotypes of IFN antagonism and growth restriction in wild-type MEFs to NSP1. Therefore, there is a direct relationship between the replication efficiencies of different rotavirus strains in MEFs and strain-related variations in NSP1-mediated antagonism of the type I IFN response.

50 citations

Journal ArticleDOI
02 Feb 2021-Cells
TL;DR: A review of gene expression suppression functions of nonstructural protein 1 (nsp1) of SARS-CoV nsp1 is presented in this paper, with a primary focus on SARS CoV Nsp1.
Abstract: Many viruses disrupt host gene expression by degrading host mRNAs and/or manipulating translation activities to create a cellular environment favorable for viral replication Often, virus-induced suppression of host gene expression, including those involved in antiviral responses, contributes to viral pathogenicity Accordingly, clarifying the mechanisms of virus-induced disruption of host gene expression is important for understanding virus–host cell interactions and virus pathogenesis Three highly pathogenic human coronaviruses (CoVs), including severe acute respiratory syndrome (SARS)-CoV, Middle East respiratory syndrome (MERS)-CoV, and SARS-CoV-2, have emerged in the past two decades All of them encode nonstructural protein 1 (nsp1) in their genomes Nsp1 of SARS-CoV and MERS-CoV exhibit common biological functions for inducing endonucleolytic cleavage of host mRNAs and inhibition of host translation, while viral mRNAs evade the nsp1-induced mRNA cleavage SARS-CoV nsp1 is a major pathogenic determinant for this virus, supporting the notion that a viral protein that suppresses host gene expression can be a virulence factor, and further suggesting the possibility that SARS-CoV-2 nsp1, which has high amino acid identity with SARS-CoV nsp1, may serve as a major virulence factor This review summarizes the gene expression suppression functions of nsp1 of CoVs, with a primary focus on SARS-CoV nsp1 and MERS-CoV nsp1

48 citations

01 Jan 2010
TL;DR: The first complete genome sequence of a caprine group A rotavirus (GAR) strain, GO34, was reported in this paper, which was assigned to the G6-P[1]-I2-R2-C2-M2-A11-N2-T6E2-H3 genotypes, respectively.
Abstract: This study reports the first complete genome sequence of a caprine group A rotavirus (GAR) strain, GO34. The VP7-VP4-VP6-VP1-VP2-VP3-NSP1-NSP2-NSP3-NSP4-NSP5 genes of strain GO34, detected in Bangladesh, were assigned to the G6-P[1]-I2-R2-C2-M2-A11-N2-T6E2-H3 genotypes, respectively. Strain GO34 was closely related to the VP4, VP6–7 and NSP4– 5 genes of bovine GARs and the NSP1 gene of GO34 to an ovine GAR. Strain GO34 shared low nucleotide sequence identities (,90%) with VP2–3 genes of other GARs, and was equally related to NSP3 genes of human, ruminant and camelid strains. The VP1, VP6 and NSP2 genes of strain GO34 also exhibited a close genetic relatedness to human G2, G6, G8 and G12 DS-1-like GARs, whereas the NSP1 of GO34 was also closely related to human G6P[14] strains. All these findings point to a common evolutionary origin of GO34 and bovine, ovine, antelope, guanaco and human G6P[14] GARs, although phylogenetically GO34 is not particularly closely related to any other rotavirus strains known to date.

48 citations

Journal ArticleDOI
TL;DR: Data suggest that alphaviruses alter the ribosome during infection and that this alteration may contribute to differential translation of host and viral messages.
Abstract: Although alphaviruses dramatically alter cellular function within hours of infection, interactions between alphaviruses and specific host cellular proteins are poorly understood. Although the alphavirus nonstructural protein 2 (nsP2) is an essential component of the viral replication complex, it also has critical auxiliary functions that determine the outcome of infection in the host. To gain a better understanding of nsP2 function, we sought to identify cellular proteins with which Venezuelan equine encephalitis virus nsP2 interacted. We demonstrate here that nsP2 associates with ribosomal protein S6 (RpS6) and that nsP2 is present in the ribosome-containing fractions of a polysome gradient, suggesting that nsP2 associates with RpS6 in the context of the whole ribosome. This result was noteworthy, since viral replicase proteins have seldom been described in direct association with components of the ribosome. The association of RpS6 with nsP2 was detected throughout the course of infection, and neither the synthesis of the viral structural proteins nor the presence of the other nonstructural proteins was required for RpS6 interaction with nsP2. nsP1 also was associated with RpS6, but other nonstructural proteins were not. RpS6 phosphorylation was dramatically diminished within hours after infection with alphaviruses. Furthermore, a reduction in the level of RpS6 protein expression led to diminished expression from alphavirus subgenomic messages, whereas no dramatic diminution in cellular translation was observed. Taken together, these data suggest that alphaviruses alter the ribosome during infection and that this alteration may contribute to differential translation of host and viral messages.

48 citations


Network Information
Related Topics (5)
Viral replication
33.4K papers, 1.6M citations
87% related
Virus
136.9K papers, 5.2M citations
83% related
RNA
111.6K papers, 5.4M citations
79% related
Virulence
35.9K papers, 1.3M citations
79% related
Nucleic acid sequence
41.6K papers, 1.9M citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202126
202020
201910
201810
201711
20169