scispace - formally typeset
Search or ask a question
Topic

NSP1

About: NSP1 is a research topic. Over the lifetime, 248 publications have been published within this topic receiving 12044 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors discuss current data about suppression of the immune responses and inhibition of protein synthesis induced by coronavirus Nsp1, as well as the prospect of liveattenuated vaccine development with virulence-attenuated viruses with mutations in Nsp 1.
Abstract: Coronaviruses have brought severe challenges to public health all over the world in the past 20years. SARS-CoV-2, the causative agent of the COVID-19 pandemic that has led to millions of deaths, belongs to the genus beta-coronavirus. Alpha- and beta-coronaviruses encode a unique protein, nonstructural protein 1 (Nsp1) that both suppresses host immune responses and reduces global gene expression levels in the host cells. As a key pathogenicity factor of coronaviruses, Nsp1 redirects the host translation machinery to increase synthesis of viral proteins. Through multiple mechanisms, coronaviruses impede host protein expression through Nsp1, while escaping inhibition to allow the translation of viral RNA. In this review, we discuss current data about suppression of the immune responses and inhibition of protein synthesis induced by coronavirus Nsp1, as well as the prospect of live-attenuated vaccine development with virulence-attenuated viruses with mutations in Nsp1.

28 citations

Posted ContentDOI
03 Nov 2020-bioRxiv
TL;DR: A comparison of the structure of the nsp1 derived from SARS-CoV-2 at 1.77Å resolution reveals how mutations alter the conformation of flexible loops, inducing the formation of novel secondary structural elements and new surface features.
Abstract: The periodic emergence of novel coronaviruses (CoVs) represents an ongoing public health concern with significant health and financial burden worldwide. The most recent occurrence originated in the city of Wuhan, China where a novel coronavirus (SARS-CoV-2) emerged causing severe respiratory illness and pneumonia. The continual emergence of novel coronaviruses underscores the importance of developing effective vaccines as well as novel therapeutic options that target either viral functions or host factors recruited to support coronavirus replication. The CoV nonstructural protein 1 (nsp1) has been shown to promote cellular mRNA degradation, block host cell translation, and inhibit the innate immune response to virus infection. Interestingly, deletion of the nsp1-coding region in infectious clones prevented the virus from productively infecting cultured cells. Because of nsp1’s importance in the CoV lifecycle, it has been highlighted as a viable target for both antiviral therapy and vaccine development. However, the fundamental molecular and structural mechanisms that underlie nsp1 function remain poorly understood, despite its critical role in the viral lifecycle. Here we report the high-resolution crystal structure of the amino, globular portion of SARS-CoV-2 nsp1 (residues 10 – 127) at 1.77A resolution. A comparison of our structure with the SARS-CoV-1 nsp1 structure reveals how mutations alter the conformation of flexible loops, inducing the formation of novel secondary structural elements and new surface features. Paired with the recently published structure of the carboxyl end of nsp1 (residues 148 – 180), our results provide the groundwork for future studies focusing on SARS-CoV-2 nsp1 structure and function during the viral lifecycle. IMPORTANCE The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the causative agent for the COVID-19 pandemic. One protein known to play a critical role in the coronavirus lifecycle is nonstructural protein1 (nsp1). As such, it has been highlighted in numerous studies as a target for both the development of antivirals and for the design of live-attenuated vaccines. Here we report the high-resolution crystal structure of nsp1 derived from SARS-CoV-2 at 1.77A resolution. This structure will facilitate future studies focusing on understanding the relationship between structure and function for nsp1. In turn, understanding these structure-function relationships will allow nsp1 to be fully exploited as a target for both antiviral development and vaccine design.

27 citations

Journal ArticleDOI
30 Sep 2015-PLOS ONE
TL;DR: This study sequenced and characterized the complete genome of strain SKT-27, the first report on full genome-based characterization of human G6P[14] strains that have emerged in Southeast Asia, and observed the occurrence of independent bovine-to-human interspecies transmission events.
Abstract: An unusual rotavirus strain, SKT-27, with the G6P[14] genotypes (RVA/Human-wt/THA/SKT-27/2012/G6P[14]), was identified in a stool specimen from a hospitalized child aged eight months with severe diarrhea. In this study, we sequenced and characterized the complete genome of strain SKT-27. On whole genomic analysis, strain SKT-27 was found to have a unique genotype constellation: G6-P[14]-I2-R2-C2-M2-A3-N2-T6-E2-H3. The non-G/P genotype constellation of this strain (I2-R2-C2-M2-A3-N2-T6-E2-H3) is commonly shared with rotavirus strains from artiodactyls such as cattle. Phylogenetic analysis indicated that nine of the 11 genes of strain SKT-27 (VP7, VP4, VP6, VP2-3, NSP1, NSP3-5) appeared to be of artiodactyl (likely bovine) origin, while the remaining VP1 and NSP2 genes were assumed to be of human origin. Thus, strain SKT-27 was found to have a bovine rotavirus genetic backbone, and thus is likely to be of bovine origin. Furthermore, strain SKT-27 appeared to be derived through interspecies transmission and reassortment events involving bovine and human rotavirus strains. Of note is that the VP7 gene of strain SKT-27 was located in G6 lineage-5 together with those of bovine rotavirus strains, away from the clusters comprising other G6P[14] strains in G6 lineages-2/6, suggesting the occurrence of independent bovine-to-human interspecies transmission events. To our knowledge, this is the first report on full genome-based characterization of human G6P[14] strains that have emerged in Southeast Asia. Our observations will provide important insights into the origin of G6P[14] strains, and into dynamic interactions between human and bovine rotavirus strains.

26 citations

Journal ArticleDOI
TL;DR: It is indicated that the papain-like cysteine protease activity of nsp1α was necessary for nSp1 to inhibit IFN-β induction.
Abstract: Porcine reproductive and respiratory syndrome virus nonstructural protein 1 (nsp1) could be auto-cleaved into nsp1α and nsp1β, both of which had the papain-like cysteine protease activities. Previous studies have shown that porcine reproductive and respiratory syndrome virus nsp1 was an interferon (IFN) antagonist. However, the mechanism by which nsp1 inhibited IFN-β production was unclear. Here, we used site-directed mutagenesis that inactivated the papain-like cysteine protease activities of nsp1 to explore whether the papain-like cysteine protease activities were required for nsp1 to disrupt IFN-β production. The results showed that mutations that inactivated papain-like cysteine protease activity of nsp1α made nsp1 lose its IFN antagonism activity, whereas mutations that inactivated papain-like cysteine protease activity of nsp1β did not influence the IFN antagonism activity of nsp1. In conclusion, our present work indicated that the papain-like cysteine protease activity of nsp1α was necessary for nsp1 to inhibit IFN-β induction.

26 citations

Journal ArticleDOI
TL;DR: The results demonstrate that the substantial diversity of NSP1 observed among group A rotaviruses (GAR) also exists within GBRs and that a high degree of diversity also exists among NSP5 of G BRs, in contrast to GAR NSP 5.
Abstract: An ovine group B rotavirus (GBR) isolate, KB63, was isolated from faeces of a young goat with diarrhoea in Xinjiang, People’s Republic of China. Sequence determination and comparison of genes 6 and 11 with the corresponding sequences of GBR strains ADRV and IDIR showed that they were the cognate genes encoding NSP1 and NSP5, respectively. While the overall identities of nucleotide sequences between these two genes and the corresponding genes of strains ADRV and IDIR were in the range 52·6–57·2%, the identities of deduced amino acid sequences were only 34·9–46·3%. These results demonstrate that the substantial diversity of NSP1 observed among group A rotaviruses (GAR) also exists within GBRs and that a high degree of diversity also exists among NSP5 of GBRs, in contrast to GAR NSP5. The NSP1 gene of KB63 contains three ORFs, whereas the NSP1 genes of other GBR strains contain only two. ORFs 2 and 3 of the KB63 gene may be derived from a single ORF corresponding to ORF2 of other GBR strains by the usage of a stop codon created by an upstream single base deletion and single point mutations. In vitro expression studies showed that ORFs 1 and 2, but not 3, of gene 6 can be translated, suggesting that ORF2 may encode a C-terminally truncated, potentially functional product. It may play a role, together with the product of ORF1, in virus replication, as the virus can be passaged further in kids. Similarly, gene 11 can be translated in vitro. Like its counterpart in GARs, the protein encoded by gene 11 was shown to be phosphorylated in vitro.

26 citations


Network Information
Related Topics (5)
Viral replication
33.4K papers, 1.6M citations
87% related
Virus
136.9K papers, 5.2M citations
83% related
RNA
111.6K papers, 5.4M citations
79% related
Virulence
35.9K papers, 1.3M citations
79% related
Nucleic acid sequence
41.6K papers, 1.9M citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202126
202020
201910
201810
201711
20169