scispace - formally typeset
Search or ask a question
Topic

NSP1

About: NSP1 is a research topic. Over the lifetime, 248 publications have been published within this topic receiving 12044 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Observations are consistent with the concept that for the inhibition of cellular protein synthesis to occur, viral RNA replication must take place at control levels, leading to the release of nuclear proteins to the cytoplasm.
Abstract: Infection of mammalian cells by Sindbis virus (SINV) profoundly blocks cellular mRNA translation. Experimental evidence points to viral non-structural proteins (nsPs), in particular nsP2, as the mediator of this inhibition. However, individual expression of nsP1, nsP2, nsP3 or nsP1-4 does not block cellular protein synthesis in BHK cells. Trans-complementation of a defective SINV replicon lacking most of the coding region for nsPs by the co-expression of nsP1-4 propitiates viral RNA replication at low levels, and inhibition of cellular translation is not observed. Exit of nuclear proteins including T-cell intracellular antigen and polypyrimidine tract-binding protein is clearly detected in SINV-infected cells, but not upon the expression of nsPs, even when the defective replicon was complemented. Analysis of a SINV variant with a point mutation in nsP2, exhibiting defects in the shut-off of host protein synthesis, indicates that both viral RNA replication and the release of nuclear proteins to the cytoplasm are greatly inhibited. Furthermore, nucleoside analogues that inhibit cellular and viral RNA synthesis impede the blockade of host mRNA translation, in addition to the release of nuclear proteins. Prevention of the shut-off of host mRNA translation by nucleoside analogues is not due to the inhibition of eIF2α phosphorylation, as this prevention is also observed in PKR(-/-) mouse embryonic fibroblasts that do not phosphorylate eIF2α after SINV infection. Collectively, our observations are consistent with the concept that for the inhibition of cellular protein synthesis to occur, viral RNA replication must take place at control levels, leading to the release of nuclear proteins to the cytoplasm.

12 citations

Posted ContentDOI
26 Jun 2019-bioRxiv
TL;DR: The results indicate that FP-expressing recombinant rotaviruses can be made through manipulation of the segment 7 dsRNA without deleting or interrupting any of the twelve open reading frames of the virus.
Abstract: Rotavirus is a segmented double-stranded (ds)RNA virus that causes severe gastroenteritis in young children. We have established an efficient simplified rotavirus reverse genetics (RG) system that uses eleven T7 plasmids, each expressing a unique simian SA11 (+)RNA, and a CMV support plasmid for the African swine fever virus NP868R capping enzyme. With the NP868R-based system, we generated recombinant rotavirus (rSA11/NSP3-FL-UnaG) with a genetically modified 1.5-kB segment 7 dsRNA that encodes full-length NSP3 fused to UnaG, a 139-aa green fluorescent protein (FP). Analysis of rSA11/NSP3-FL-UnaG showed that the virus replicated efficiently and was genetically stable over 10 rounds of serial passage. The NSP3-UnaG fusion product was well expressed in rSA11/NSP3-FL-UnaG-infected cells, reaching levels similar to NSP3 in wildtype rSA11-infected cells. Moreover, the NSP3-UnaG protein, like functional wildtype NSP3, formed dimers in vivo. Notably, NSP3-UnaG protein was readily detected in infected cells via live cell imaging, with intensity levels ~3-fold greater than that of the NSP1-UnaG fusion product of rSA11/NSP1-FL-UnaG. Our results indicate that FP-expressing recombinant rotaviruses can be made through manipulation of the segment 7 dsRNA without deleting or interrupting any of the twelve open reading frames of the virus. Because NSP3 is expressed at levels higher than NSP1 in infected cells, rotaviruses expressing NSP3-based FPs may be a more sensitive tool for studying rotavirus biology than rotaviruses expressing NSP1-based FPs. This is the first report of a recombinant rotavirus containing a genetically engineered segment 7 dsRNA. Importance Previous studies have generated recombinant rotaviruses that express fluorescent proteins (FPs) by inserting reporter genes into the NSP1 open reading frame (ORF) of genome segment 5. Unfortunately, NSP1 is expressed at low levels in infected cells, making viruses expressing FP-fused NSP1 less than ideal probes of rotavirus biology. Moreover, FPs were inserted into segment 5 in such a way as to compromise NSP1, an interferon antagonist affecting viral growth and pathogenesis. We have identified an alternative approach for generating rotaviruses expressing FPs, one relying on fusing the reporter gene to the NSP3 ORF of genome segment 7. This was accomplished without interrupting any of the viral ORFs, yielding recombinant viruses likely expressing the complete set of functional viral proteins. Given that NSP3 is made at moderate levels in infected cells, rotavirus encoding NSP3-based FPs should be more sensitive probes of viral infection than rotaviruses encoding NSP1-based FPs.

12 citations

Journal ArticleDOI
TL;DR: Rotavirus ts mutation groups are now mapped to 9 of the 11 rotavirus genome segments, and possible segment locations of the two remaining unmapped ts mutant groups are discussed.
Abstract: Four rotavirus SA11 temperature-sensitive (ts) mutants and seven rotavirus RRV ts mutants, isolated at the National Institutes of Health (NIH) and not genetically characterized, were assigned to reassortment groups by pairwise crosses with the SA11 mutant group prototypes isolated and characterized at Baylor College of Medicine (BCM). Among the NIH mutants, three of the RRV mutants and all four SA11 mutants contained mutations in single reassortment groups, and four RRV mutants contained mutations in multiple groups. One NIH mutant [RRVtsK(2)] identified the previously undefined 11th reassortment group (K) expected for rotavirus. Three NIH single mutant RRV viruses, RRVtsD(7), RRVtsJ(5), and RRVtsK(2), were in reassortment groups not previously mapped to genome segments. These mutants were mapped using classical genetic methods, including backcrosses to demonstrate reversion or suppression in reassortants with incongruent genotype and temperature phenotype. Once located to specific genome segments by genetic means, the mutations responsible for the ts phenotype were identified by sequencing. The reassortment group K mutant RRVtsK(2) maps to genome segment 9 and has a Thr280Ileu mutation in the capsid surface glycoprotein VP7. The group D mutant RRVtsD(7) maps to segment 5 and has a Leu140Val mutation in the nonstructural interferon (IFN) antagonist protein NSP1. The group J mutant RRVtsJ(5) maps to segment 11 and has an Ala182Gly mutation affecting only the NSP5 open reading frame. Rotavirus ts mutation groups are now mapped to 9 of the 11 rotavirus genome segments. Possible segment locations of the two remaining unmapped ts mutant groups are discussed.

11 citations

Journal ArticleDOI
TL;DR: In this article, the crystal structure of the N terminus (amino acids 11 to 125) of SARS-CoV-2 Nsp1 was determined at a 1.25-A resolution.
Abstract: Nonstructural protein 1 (Nsp1) of severe acute respiratory syndrome coronaviruses (SARS-CoVs) is an important pathogenic factor that inhibits host protein translation by means of its C terminus. However, its N-terminal function remains elusive. Here, we determined the crystal structure of the N terminus (amino acids [aa] 11 to 125) of SARS-CoV-2 Nsp1 at a 1.25-A resolution. Further functional assays showed that the N terminus of SARS-CoVs Nsp1 alone loses the ability to colocalize with ribosomes and inhibit protein translation. The C terminus of Nsp1 can colocalize with ribosomes, but its protein translation inhibition ability is significantly weakened. Interestingly, fusing the C terminus of Nsp1 with enhanced green fluorescent protein (EGFP) or other proteins in place of its N terminus restored the protein translation inhibitory ability to a level equivalent to that of full-length Nsp1. Thus, our results suggest that the N terminus of Nsp1 is able to stabilize the binding of the Nsp1 C terminus to ribosomes and act as a nonspecific barrier to block the mRNA channel, thus abrogating host mRNA translation.

11 citations

Journal ArticleDOI
TL;DR: The role of NSP1 appears to be to modulate the impact of the NSP3-based inhibition of cellular translation by binding to the 5′ end of viral mRNAs.
Abstract: The role of the rotavirus non-structural proteins NSP1 and NSP3 in regulating cellular and viral mRNA translation has been investigated by examining the effect of added recombinant NSP3 on protein translation in a T7-based in vitro coupled transcription-translation system. Addition of purified NSP3 to assays primed solely with cellular mRNA was found to have no effect on the translation efficiency of the mRNA. However, as expected, the addition of viral mRNA to such assays competitively inhibited the synthesis of cellular protein, and interestingly, this inhibition was enhanced by the addition of NSP3. Treatment of NSP3 with antisera raised against the purified protein abrogated its function, but only when used prior to mixing the protein with viral mRNA. Addition of partially purified NSP1 to the coupled system was able to alleviate the enhancement of the inhibition of cellular mRNA translation caused by NSP3. The role of NSP1 in this process appears to be to modulate the impact of the NSP3-based inhibition of cellular translation by binding to the 5′ end of viral mRNAs.

10 citations


Network Information
Related Topics (5)
Viral replication
33.4K papers, 1.6M citations
87% related
Virus
136.9K papers, 5.2M citations
83% related
RNA
111.6K papers, 5.4M citations
79% related
Virulence
35.9K papers, 1.3M citations
79% related
Nucleic acid sequence
41.6K papers, 1.9M citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202126
202020
201910
201810
201711
20169