scispace - formally typeset
Search or ask a question

Showing papers on "Nuclear DNA published in 2017"


Journal ArticleDOI
TL;DR: The observations suggest that the BGISEQ-500 holds the potential to represent a valid and potentially valuable alternative platform for palaeogenomic data generation that is worthy of future exploration by those interested in the sequencing and analysis of degraded DNA.
Abstract: Ancient DNA research has been revolutionized following development of next-generation sequencing platforms. Although a number of such platforms have been applied to ancient DNA samples, the Illumina series are the dominant choice today, mainly because of high production capacities and short read production. Recently a potentially attractive alternative platform for palaeogenomic data generation has been developed, the BGISEQ-500, whose sequence output are comparable with the Illumina series. In this study, we modified the standard BGISEQ-500 library preparation specifically for use on degraded DNA, then directly compared the sequencing performance and data quality of the BGISEQ-500 to the Illumina HiSeq2500 platform on DNA extracted from 8 historic and ancient dog and wolf samples. The data generated were largely comparable between sequencing platforms, with no statistically significant difference observed for parameters including level (P = 0.371) and average sequence length (P = 0718) of endogenous nuclear DNA, sequence GC content (P = 0.311), double-stranded DNA damage rate (v. 0.309), and sequence clonality (P = 0.093). Small significant differences were found in single-strand DNA damage rate (δS; slightly lower for the BGISEQ-500, P = 0.011) and the background rate of difference from the reference genome (θ; slightly higher for BGISEQ-500, P = 0.012). This may result from the differences in amplification cycles used to polymerase chain reaction-amplify the libraries. A significant difference was also observed in the mitochondrial DNA percentages recovered (P = 0.018), although we believe this is likely a stochastic effect relating to the extremely low levels of mitochondria that were sequenced from 3 of the samples with overall very low levels of endogenous DNA. Although we acknowledge that our analyses were limited to animal material, our observations suggest that the BGISEQ-500 holds the potential to represent a valid and potentially valuable alternative platform for palaeogenomic data generation that is worthy of future exploration by those interested in the sequencing and analysis of degraded DNA.

282 citations


Journal ArticleDOI
TL;DR: It is demonstrated that the ratio of mitochondrial over nuclear mutation rate is highly variable among animal taxa, and the among-phyla homogeneity in within-species mtDNA diversity is due to a negative correlation between mtDNA per-generation mutation rate and effective population size, irrespective of the action of natural selection.
Abstract: It is commonly assumed that mitochondrial DNA (mtDNA) evolves at a faster rate than nuclear DNA (nuDNA) in animals. This has contributed to the popularity of mtDNA as a molecular marker in evolutionary studies. Analyzing 121 multilocus data sets and four phylogenomic data sets encompassing 4,676 species of animals, we demonstrate that the ratio of mitochondrial over nuclear mutation rate is highly variable among animal taxa. In nonvertebrates, such as insects and arachnids, the ratio of mtDNA over nuDNA mutation rate varies between 2 and 6, whereas it is above 20, on average, in vertebrates such as scaled reptiles and birds. Interestingly, this variation is sufficient to explain the previous report of a similar level of mitochondrial polymorphism, on average, between vertebrates and nonvertebrates, which was originally interpreted as reflecting the effect of pervasive positive selection. Our analysis rather indicates that the among-phyla homogeneity in within-species mtDNA diversity is due to a negative correlation between mtDNA per-generation mutation rate and effective population size, irrespective of the action of natural selection. Finally, we explore the variation in the absolute per-year mutation rate of both mtDNA and nuDNA using a reduced data set for which fossil calibration is available, and discuss the potential determinants of mutation rate variation across genomes and taxa. This study has important implications regarding DNA-based identification methods in predicting that mtDNA barcoding should be less reliable in nonvertebrates than in vertebrates.

217 citations


Journal ArticleDOI
TL;DR: How the views about its structure, function and transmission have changed, how these changes affect the information accumulated through its use in the fields of phylogeny and population structure and what are the most important questions that remain open for future research are discussed.
Abstract: Mitochondrial DNA (mtDNA) has been studied intensely for “its own” merit. Its role for the function of the cell and the organism remains a fertile field, its origin and evolution is an indispensable part of the evolution of life and its interaction with the nuclear DNA is among the most important cases of genome synergism and co-evolution. Also, mtDNA was proven one of the most useful tools in population genetics and molecular phylogenetics. In this article we focus on animal mtDNA and discuss briefly how our views about its structure, function and transmission have changed, how these changes affect the information we have accumulated through its use in the fields of phylogeny and population structure and what are the most important questions that remain open for future research.

94 citations


Journal ArticleDOI
TL;DR: Higher levels of nuclear and mtDNA were observed in the culture media that had been exposed to embryos compared with the internal media controls, and the levels increased at the blastocyst stage.

92 citations


Journal ArticleDOI
TL;DR: Several lines of experimental evidence support the idea that mitochondria and mtDNA are susceptible and biologically relevant targets for pollutants, and more studies are needed to shed more light into the contribution of mitochondrial dysfunction to the environmental and human health effects of chemical exposure.

88 citations


Journal ArticleDOI
TL;DR: How genome integrity is maintained within nucleoli and how such structures are functionally linked to nuclear DNA damage response and repair are discussed giving an emphasis on the newly emerging roles of the nucleolus in mammalian physiology and disease.
Abstract: The nucleolus is the subnuclear membrane-less organelle where rRNA is transcribed and processed and ribosomal assembly occurs. During the last 20 years, however, the nucleolus has emerged as a multifunctional organelle, regulating processes that go well beyond its traditional role. Moreover, the unique organization of rDNA in tandem arrays and its unusually high transcription rates make it prone to unscheduled DNA recombination events and frequent RNA:DNA hybrids leading to DNA double strand breaks (DSBs). If not properly repaired, rDNA damage may contribute to premature disease onset and aging. Deregulation of ribosomal synthesis at any level from transcription and processing to ribosomal subunit assembly elicits a stress response and is also associated with disease onset. Here, we discuss how genome integrity is maintained within nucleoli and how such structures are functionally linked to nuclear DNA damage response and repair giving an emphasis on the newly emerging roles of the nucleolus in mammalian physiology and disease.

65 citations


Journal ArticleDOI
TL;DR: In this paper, the authors defined holocrine secretion as a DNase2-mediated form of programmed cell death and suggest that autophagy-dependent metabolism, DNA degradation, and the molecular composition of sebum are mechanistically linked.

60 citations


Journal ArticleDOI
TL;DR: It is shown that AID is transiently in spatial contact with genomic DNA from the time the nuclear membrane breaks down in prometaphase until early G1, when it is actively exported into the cytoplasm, and the immunoglobulin (Igh) gene deamination as measured by uracil accumulation occurs primarily in early G2.
Abstract: Activation-induced cytidine deaminase (AID) converts cytosine into uracil to initiate somatic hypermutation (SHM) and class switch recombination (CSR) of antibody genes. In addition, this enzyme produces DNA lesions at off-target sites that lead to mutations and chromosome translocations. However, AID is mostly cytoplasmic, and how and exactly when it accesses nuclear DNA remains enigmatic. Here, we show that AID is transiently in spatial contact with genomic DNA from the time the nuclear membrane breaks down in prometaphase until early G1, when it is actively exported into the cytoplasm. Consistent with this observation, the immunoglobulin (Igh) gene deamination as measured by uracil accumulation occurs primarily in early G1 after chromosomes decondense. Altering the timing of cell cycle-regulated AID nuclear residence increases DNA damage at off-target sites. Thus, the cell cycle-controlled breakdown and reassembly of the nuclear membrane and the restoration of transcription after mitosis constitute an essential time window for AID-induced deamination, and provide a novel DNA damage mechanism restricted to early G1.

58 citations


Journal ArticleDOI
TL;DR: It is shown that simple sequence requirements may enable DNA from foreign sources to persist in the nucleus as extrachromosomal episomes, revealing a potential mechanism for organellar and foreign DNA acquisition.
Abstract: Centromeres are essential for cell division and growth in all eukaryotes, and knowledge of their sequence and structure guides the development of artificial chromosomes for functional cellular biology studies. Centromeric proteins are conserved among eukaryotes; however, centromeric DNA sequences are highly variable. We combined forward and reverse genetic approaches with chromatin immunoprecipitation to identify centromeres of the model diatom Phaeodactylum tricornutum We observed 25 unique centromere sequences typically occurring once per chromosome, a finding that helps to resolve nuclear genome organization and indicates monocentric regional centromeres. Diatom centromere sequences contain low-GC content regions but lack repeats or other conserved sequence features. Native and foreign sequences with similar GC content to P. tricornutum centromeres can maintain episomes and recruit the diatom centromeric histone protein CENH3, suggesting nonnative sequences can also function as diatom centromeres. Thus, simple sequence requirements may enable DNA from foreign sources to persist in the nucleus as extrachromosomal episomes, revealing a potential mechanism for organellar and foreign DNA acquisition.

54 citations


Journal ArticleDOI
TL;DR: The knowledge of mitochondrial RNA is summarized, recent progress in understanding the molecular mechanisms and functional impact of RNA import into mitochondria are discussed, and rising challenges and opportunities in this rapidly evolving field are identified.
Abstract: Mitochondria are cytosolic organelles essential for generating energy and maintaining cell homeostasis. Despite their critical function, the handful of proteins expressed by the mitochondrial genome is insufficient to maintain mitochondrial structure or activity. Accordingly, mitochondrial metabolism is fully dependent on factors encoded by the nuclear DNA, including many proteins synthesized in the cytosol and imported into mitochondria via established mechanisms. However, there is growing evidence that mammalian mitochondria can also import cytosolic noncoding RNA via poorly understood processes. Here, we summarize our knowledge of mitochondrial RNA, discuss recent progress in understanding the molecular mechanisms and functional impact of RNA import into mitochondria, and identify rising challenges and opportunities in this rapidly evolving field. [BMB Reports 2017; 50(4): 164-174].

51 citations


Journal ArticleDOI
TL;DR: Results suggested that ITS1 is a more sensitive genetic marker for eDNA studies of C. carpio, with copy numbers about 160, 300 and 150 times higher than those of CytB, respectively.
Abstract: The recently developed environmental DNA (eDNA) analysis has been used to estimate the distribution of aquatic vertebrates by using mitochondrial DNA (mtDNA) as a genetic marker. However, mtDNA markers have certain drawbacks such as variable copy number and maternal inheritance. In this study, we investigated the potential of using nuclear DNA (ncDNA) as a more reliable genetic marker for eDNA analysis by using common carp (Cyprinus carpio). We measured the copy numbers of cytochrome b (CytB) gene region of mtDNA and internal transcribed spacer 1 (ITS1) region of ribosomal DNA of ncDNA in various carp tissues and then compared the detectability of these markers in eDNA samples. In the DNA extracted from the brain and gill tissues and intestinal contents, CytB was detected at 95.1 ± 10.7 (mean ± 1 standard error), 29.7 ± 1.59 and 24.0 ± 4.33 copies per cell, respectively, and ITS1 was detected at 1760 ± 343, 2880 ± 503 and 1910 ± 352 copies per cell, respectively. In the eDNA samples from mesocosm, pond and lake water, the copy numbers of ITS1 were about 160, 300 and 150 times higher than those of CytB, respectively. The minimum volume of pond water required for quantification was 33 and 100 mL for ITS1 and CytB, respectively. These results suggested that ITS1 is a more sensitive genetic marker for eDNA studies of C. carpio.

Journal ArticleDOI
TL;DR: It is shown that mtDNA could alter mammary tumor metastasis and thereby contribute to the pathogenesis of metastasis using a unique mouse model that contains nDNA from one mouse strain and homoplasmic mitochondrial haplotypes from different mouse strain(s).
Abstract: Mitochondrial DNA (mtDNA) mutations and polymorphisms contribute to many complex diseases, including cancer. Using a unique mouse model that contains nDNA from one mouse strain and homoplasmic mitochondrial haplotypes from different mouse strain(s)-designated Mitochondrial Nuclear Exchange (MNX)-we showed that mtDNA could alter mammary tumor metastasis. Because retrograde and anterograde communication exists between the nuclear and mitochondrial genomes, we hypothesized that there are differential mtDNA-driven changes in nuclear (n)DNA expression and DNA methylation. Genome-wide nDNA methylation and gene expression were measured in harvested brain tissue from paired wild-type and MNX mice. Selective differential DNA methylation and gene expression were observed between strains having identical nDNA, but different mtDNA. These observations provide insights into how mtDNA could be altering epigenetic regulation and thereby contribute to the pathogenesis of metastasis. Cancer Res; 77(22); 6202-14. ©2017 AACR.

Journal ArticleDOI
TL;DR: The data show that TDP1 resolves mitochondrial PDBs, thereby regulating mitochondrial gene transcription and oxygen consumption by oxidative phosphorylation, thus conferring cellular protection against reactive oxygen species–induced damage.
Abstract: Breakage of one strand of DNA is the most common form of DNA damage. Most damaged DNA termini require end-processing in preparation for ligation. The importance of this step is highlighted by the association of defects in the 3'-end processing enzyme tyrosyl DNA phosphodiesterase 1 (TDP1) and neurodegeneration and by the cytotoxic induction of protein-linked DNA breaks (PDBs) and oxidized nucleic acid intermediates during chemotherapy and radiotherapy. Although much is known about the repair of PDBs in the nucleus, little is known about this process in the mitochondria. We reveal that TDP1 resolves mitochondrial PDBs (mtPDBs), thereby promoting mitochondrial gene transcription. Overexpression of a toxic form of mitochondrial topoisomerase I (TOP1mt*), which generates excessive mtPDBs, results in a TDP1-dependent compensatory up-regulation of mitochondrial gene transcription. In the absence of TDP1, the imbalance in transcription of mitochondrial- and nuclear-encoded electron transport chain (ETC) subunits results in misassembly of ETC complex III. Bioenergetics profiling further reveals that TDP1 promotes oxidative phosphorylation under both basal and high energy demands. It is known that mitochondrial dysfunction results in free radical leakage and nuclear DNA damage; however, the detection of intermediates of radical damage to DNA is yet to be shown. Consequently, we report an increased accumulation of carbon-centered radicals in cells lacking TDP1, using electron spin resonance spectroscopy. Overexpression of the antioxidant enzyme superoxide dismutase 1 (SOD1) reduces carbon-centered adducts and protects TDP1-deficient cells from oxidative stress. Conversely, overexpression of the amyotrophic lateral sclerosis-associated mutant SOD1G93A leads to marked sensitivity. Whereas Tdp1 knockout mice develop normally, overexpression of SOD1G93A suggests early embryonic lethality. Together, our data show that TDP1 resolves mtPDBs, thereby regulating mitochondrial gene transcription and oxygen consumption by oxidative phosphorylation, thus conferring cellular protection against reactive oxygen species-induced damage.

Journal ArticleDOI
TL;DR: A well-resolved plastid phylogeny of Daucus is produced and the first instance in flowering plants of a sequence of potential nuclear genome origin inserted into the plastID genome is identified.
Abstract: PREMISE OF THE STUDY We explored the phylogenetic utility of entire plastid DNA sequences in Daucus and compared the results with prior phylogenetic results using plastid and nuclear DNA sequences. METHODS We used Illumina sequencing to obtain full plastid sequences of 37 accessions of 20 Daucus taxa and outgroups, analyzed the data with phylogenetic methods, and examined evidence for mitochondrial DNA transfer to the plastid (DcMP). KEY RESULTS Our phylogenetic trees of the entire data set were highly resolved, with 100% bootstrap support for most of the external and many of the internal clades, except for the clade of D. carota and its most closely related species D. syrticus. Subsets of the data, including regions traditionally used as phylogenetically informative regions, provide various degrees of soft congruence with the entire data set. There are areas of hard incongruence, however, with phylogenies using nuclear data. We extended knowledge of a mitochondrial to plastid DNA insertion sequence previously named DcMP and identified the first instance in flowering plants of a sequence of potential nuclear genome origin inserted into the plastid genome. There is a relationship of inverted repeat junction classes and repeat DNA to phylogeny, but no such relationship with nonsynonymous mutations. CONCLUSIONS Our data have allowed us to (1) produce a well-resolved plastid phylogeny of Daucus, (2) evaluate subsets of the entire plastid data for phylogeny, (3) examine evidence for plastid and nuclear DNA phylogenetic incongruence, and (4) examine mitochondrial and nuclear DNA insertion into the plastid.

Journal ArticleDOI
TL;DR: A branched DNA in situ hybridization method for direct single-cell visualization of HIV DNA, RNA, and protein, which can be used to simultaneously detect multiple viral nucleic acid intermediates, characterize the effects of host factors or drugs on steps of the HIV life cycle, or its reactivation from the latent state, thus facilitating the development of antivirals and latency reactivating agents.
Abstract: Technical limitations in simultaneous microscopic visualization of RNA, DNA, and proteins of HIV have curtailed progress in this field. To address this need we develop a microscopy approach, multiplex immunofluorescent cell-based detection of DNA, RNA and Protein (MICDDRP), which is based on branched DNA in situ hybridization technology. MICDDRP enables simultaneous single-cell visualization of HIV (a) spliced and unspliced RNA, (b) cytoplasmic and nuclear DNA, and (c) Gag. We use MICDDRP to visualize incoming capsid cores containing RNA and/or nascent DNA and follow reverse transcription kinetics. We also report transcriptional “bursts” of nascent RNA from integrated proviral DNA, and concomitant HIV-1, HIV-2 transcription in co-infected cells. MICDDRP can be used to simultaneously detect multiple viral nucleic acid intermediates, characterize the effects of host factors or drugs on steps of the HIV life cycle, or its reactivation from the latent state, thus facilitating the development of antivirals and latency reactivating agents. Technical limitations in simultaneous microscopic visualization of HIV transcription from individual integration sites have curtailed progress in the field. Here the authors report a branched DNA in situ hybridization method for direct single-cell visualization of HIV DNA, RNA, and protein.

Journal ArticleDOI
TL;DR: What is currently known about the mechanisms of DNA replication in the mitochondrion, the proteins that carry out these processes and how PrimPol is likely to be involved in assisting this vital cellular process are discussed.
Abstract: PrimPol, (Primase-Polymerase), the most recently identified eukaryotic polymerase, has roles in both nuclear and mitochondrial DNA maintenance. PrimPol is able to act as a DNA polymerase, with the ability to extend primers and also bypass a variety of oxidative and photo-lesions. In addition, PrimPol also functions as a primase, catalysing the preferential formation of DNA primers in a zinc finger-dependent manner. Although PrimPol’s catalytic activities have been uncovered in vitro, we still know little about how and why it is targeted to the mitochondrion and what its key roles are in the maintenance of this multi-copy DNA molecule. Unlike nuclear DNA, the mammalian mitochondrial genome is circular and the organelle has a number of unique proteins essential for its maintenance, presenting a differing environment within which PrimPol must function. Here, we discuss what is currently known about the mechanisms of DNA replication in the mitochondrion, the proteins that carry out these processes and how PrimPol is likely to be involved in assisting this vital cellular process.

Journal ArticleDOI
TL;DR: This review highlights alterations in mtDNA, with a specific focus on polymorphisms associated with cancer susceptibility and/or prognosis, mtDNA as cancer biomarkers, and considerations for investigating the role of mtDNA in cancer progression for future studies.
Abstract: Alterations in mitochondrial DNA (mtDNA) were once thought to be predominantly innocuous to cell growth. Recent evidence suggests that mtDNA undergo naturally occurring alterations, including mutations and polymorphisms, which profoundly affect the cells in which they appear and contribute to a variety of diseases, including cardiovascular disease, diabetes, and cancer. Furthermore, interplay between mtDNA and nuclear DNA has been found in cancer cells, necessitating consideration of these complex interactions for future studies of cancer mutations and polymorphisms. In this issue of Cancer Research, Vivian and colleagues utilize a unique mouse model, called Mitochondrial Nuclear eXchange mice, that contain the nuclear DNA from one inbred mouse strain, and the mtDNA from a different inbred mouse strain to examine the genome-wide nuclear DNA methylation and gene expression patterns of brain tissue. Results demonstrated there were alterations in nuclear DNA expression and DNA methylation driven by mtDNA. These alterations may impact disease pathogenesis. In light of these results, in this review, we highlight alterations in mtDNA, with a specific focus on polymorphisms associated with cancer susceptibility and/or prognosis, mtDNA as cancer biomarkers, and considerations for investigating the role of mtDNA in cancer progression for future studies. Cancer Res; 77(22); 6051–9. ©2017 AACR.

Journal ArticleDOI
TL;DR: Results show that mitochondrial and nuclear genomes from divergent human populations can co-exist within healthy individuals, indicating that mismatched nDNA-mtDNA combinations are not deleterious or subject to purifying selection.
Abstract: Mitochondrial replacement (MR) therapy is a new assisted reproductive technology that allows women with mitochondrial disorders to give birth to healthy children by combining their nuclei with mitochondria from unaffected egg donors. Evolutionary biologists have raised concerns about the safety of MR therapy based on the extent to which nuclear and mitochondrial genomes are observed to co-evolve within natural populations, i.e. the nuclear-mitochondrial mismatch hypothesis. In support of this hypothesis, a number of previous studies on model organisms have provided evidence for incompatibility between nuclear and mitochondrial genomes from divergent populations of the same species. We tested the nuclear-mitochondrial mismatch hypothesis for humans by observing the extent of naturally occurring nuclear-mitochondrial mismatch seen for 2,504 individuals across 26 populations, from 5 continental populations groups, characterized as part of the 1000 Genomes Project (1KGP). We also performed a replication analysis on mitochondrial DNA (mtDNA) haplotypes for 1,043 individuals from 58 populations, characterized as part of the Human Genome Diversity Project (HGDP). Nuclear DNA (nDNA) and mtDNA sequences from the 1KGP were directly compared within and between populations, and the population distributions of mtDNA haplotypes derived from both sequence (1KGP) and genotype (HGDP) data were evaluated. Levels of nDNA and mtDNA pairwise sequence divergence are highly correlated, consistent with their co-evolution among human populations. However, there are numerous cases of co-occurrence of nuclear and mitochondrial genomes from divergent populations within individual humans. Furthermore, pairs of individuals with closely related nuclear genomes can have highly divergent mtDNA haplotypes. Supposedly mismatched nuclear-mitochondrial genome combinations are found not only within individuals from populations known to be admixed, where they may be expected, but also from populations with low overall levels of observed admixture. These results show that mitochondrial and nuclear genomes from divergent human populations can co-exist within healthy individuals, indicating that mismatched nDNA-mtDNA combinations are not deleterious or subject to purifying selection. Accordingly, human nuclear-mitochondrial mismatches are not likely to jeopardize the safety of MR therapy.

Journal ArticleDOI
TL;DR: The result indicates that the cell-free mitochondrial DNA content is highly associated with smoke and smokeless tobacco, betel quid chewing, and alcohol which shows greater promises, holding the key characteristics of diagnostic biomarkers, that is, minimal invasiveness, high specificity, and sensitivity.
Abstract: Head and neck squamous cell carcinoma is the most commonly diagnosed cancer worldwide. The lifestyle, food habits, and customary practices manifest the Northeast Indian population toward higher susceptibility to develop head and neck squamous cell carcinoma. Here, we have investigated the association of smoke and smokeless tobacco, and alcohol with copy number variation of cell-free mitochondrial DNA and cell-free nuclear DNA in cases and controls. Cell-free DNA from plasma was isolated from 50 head and neck squamous cell carcinoma cases and 50 controls with informed written consent using QIAamp Circulating Nucleic Acid Kit. Real-time polymerase chain reaction was done for copy number variation in cell-free mitochondrial DNA and cell-free nuclear DNA. Receiver operating characteristic curve analysis was performed to evaluate the diagnostic application between the two study groups using clinicopathological parameters. The levels of cell-free nuclear DNA and cell-free mitochondrial DNA of cases in associati...

Journal ArticleDOI
TL;DR: It is suggested that VPA induces a crosstalk between nDNA hypermethylation and mtDNA hypomethylation that plays a role in oxidative stress and steatosis development.
Abstract: Valproic acid (VPA) is one of the most widely prescribed antiepileptic drugs in the world. Despite its pharmacological importance, it may cause liver toxicity and steatosis through mitochondrial dysfunction. The aim of this study is to further investigate VPA-induced mechanisms of steatosis by analyzing changes in patterns of methylation in nuclear DNA (nDNA) and mitochondrial DNA (mtDNA). Therefore, primary human hepatocytes (PHHs) were exposed to an incubation concentration of VPA that was shown to cause steatosis without inducing overt cytotoxicity. VPA was administered daily for 5 days, and this was followed by a 3 day washout (WO). Methylated DNA regions (DMRs) were identified by using the methylated DNA immunoprecipitation–sequencing (MeDIP-seq) method. The nDNA DMRs after VPA treatment could indeed be classified into oxidative stress- and steatosis-related pathways. In particular, networks of the steatosis-related gene EP300 provided novel insight into the mechanisms of toxicity induced by VPA trea...

Journal ArticleDOI
06 Jul 2017-PLOS ONE
TL;DR: Evidence is provided for significant method-dependent bias in DNA isolation from human brain, as reported in rat tissues, and which may contribute to array “waves”, and could affect copy number determination, and sequencing coverage.
Abstract: Potential bias introduced during DNA isolation is inadequately explored, although it could have significant impact on downstream analysis. To investigate this in human brain, we isolated DNA from cerebellum and frontal cortex using spin columns under different conditions, and salting-out. We first analysed DNA using array CGH, which revealed a striking wave pattern suggesting primarily GC-rich cerebellar losses, even against matched frontal cortex DNA, with a similar pattern on a SNP array. The aCGH changes varied with the isolation protocol. Droplet digital PCR of two genes also showed protocol-dependent losses. Whole genome sequencing showed GC-dependent variation in coverage with spin column isolation from cerebellum. We also extracted and sequenced DNA from substantia nigra using salting-out and phenol / chloroform. The mtDNA copy number, assessed by reads mapping to the mitochondrial genome, was higher in substantia nigra when using phenol / chloroform. We thus provide evidence for significant method-dependent bias in DNA isolation from human brain, as reported in rat tissues. This may contribute to array "waves", and could affect copy number determination, particularly if mosaicism is being sought, and sequencing coverage. Variations in isolation protocol may also affect apparent mtDNA abundance.

Journal ArticleDOI
TL;DR: The first complete mitochondrial genome (mitogenome) of the cyclosporin-producing fungus Tolypocladium inflatum is annotated and the genome-wide sequence variations among five isolates originating from distantly separated localities are reported.
Abstract: Mitochondrial DNA is generally regarded to evolve faster than nuclear DNA in animals, whereas if this is also true in fungi remains unclear. Herein, we annotate the first complete mitochondrial genome (mitogenome) of the cyclosporin-producing fungus Tolypocladium inflatum and report the genome-wide sequence variations among five isolates originating from distantly separated localities. We found that T. inflatum has among the most compact of fungal mitogenomes; its 25 kb DNA molecule encodes all standard fungal mitochondrial genes and harbors only one intron. Transcriptional analyses validated the expression of most conserved genes. We found several uncommon repetitive elements and evidence of gene transfer from the mitochondrion to the nucleus. Phylogenetic analyses confirmed the placement of T. inflatum in the fungal order Hypocreales although there was uncertainty on its family-level affiliation. Comparative genomic analyses among the five isolates identified an overall lower level of intraspecific variation in mitogenomes than in nuclear genomes; however, both the nuclear and mitochondrial genomes revealed similar isolate relationships, not correlating with geographic sources of these isolates. Our study shed new insights into the evolution of the medicinally important ascomycete T. inflatum.

Journal ArticleDOI
TL;DR: It is proposed that the evidence is more consistent with adaptive mitochondrial introgression and selection against incompatible mitochondrial‐nuclear combinations, which likely generated an axis of coastal‐inland mitochondrial differentiation in the face of nuclear gene flow, perpendicular to the initial north–south axis of differentiation.
Abstract: Differential introgression of mitochondrial versus nuclear DNA generates discordant patterns of geographic variation and can promote population divergence and speciation. We examined a potential case of mitochondrial introgression leading to two perpendicular axes of differentiation. The Eastern Yellow Robin Eopsaltria australis, a widespread Australian bird, shows a deep mitochondrial split that is perpendicular to north-south nuclear DNA and plumage colour differentiation. We propose a scenario to explain this pattern: (1) the two nuclear and mitochondrial genomes differentiated in concert during north-south population divergence; (2) later, their histories disconnected after two mitochondrial introgression events resulting in a deep mitochondrial split perpendicular to the nuclear DNA structure. We explored this scenario by coalescent modelling of ten mitochondrial genes and 400 nuclear DNA loci. Initial mitochondrial and nuclear genome divergences were estimated to have occurred in the early Pleistocene, consistent with the proposed scenario. Subsequent climatic transitions may have driven later mitochondrial introgression. We consider neutral introgression unlikely and instead propose that the evidence is more consistent with adaptive mitochondrial introgression and selection against incompatible mitochondrial-nuclear combinations. This likely generated an axis of coastal-inland mitochondrial differentiation in the face of nuclear gene flow, perpendicular to the initial north-south axis of differentiation (reflected in genome-wide nuclear DNA and colour variation). This article is protected by copyright. All rights reserved.

Book ChapterDOI
Sung Ryul Lee1, Jin Han1
TL;DR: Current understanding of mitochondrial mutations and their role in cardiac involvement are summarized, and epigenetic modifications of mtDNA are briefly discussed for future elucidation of their critical role in heart involvement.
Abstract: Mitochondria individually encapsulate their own genome, unlike other cellular organelles Mitochondrial DNA (mtDNA) is a circular, double-stranded, 16,569-base paired DNA containing 37 genes: 13 proteins of the mitochondrial respiratory chain, two ribosomal RNAs (rRNAs; 12S and 16S), and 22 transfer RNAs (tRNAs) The mtDNA is more vulnerable to oxidative modifications compared to nuclear DNA because of its proximity to ROS-producing sites, limited presence of DNA damage repair systems, and continuous replication in the cell mtDNA mutations can be inherited or sporadic Simple mtDNA mutations are point mutations, which are frequently found in mitochondrial tRNA loci, causing mischarging of mitochondrial tRNAs or deletion, duplication, or reduction in mtDNA content Because mtDNA has multiple copies and a specific replication mechanism in cells or tissues, it can be heterogenous, resulting in characteristic phenotypic presentations such as heteroplasmy, genetic drift, and threshold effects Recent studies have increased the understanding of basic mitochondrial genetics, providing an insight into the correlations between mitochondrial mutations and cardiac manifestations including hypertrophic or dilated cardiomyopathy, arrhythmia, autonomic nervous system dysfunction, heart failure, or sudden cardiac death with a syndromic or non-syndromic phenotype Clinical manifestations of mitochondrial mutations, which result from structural defects, functional impairment, or both, are increasingly detected but are not clear because of the complex interplay between the mitochondrial and nuclear genomes, even in homoplasmic mitochondrial populations Additionally, various factors such as individual susceptibility, nutritional state, and exposure to chemicals can influence phenotypic presentation, even for the same mtDNA mutation

Journal ArticleDOI
TL;DR: It is confidently implicates that mutations in WARS2 cause mitochondrial disease with a broad spectrum of clinical presentation, and the clinical, neuroradiological, and metabolic phenotype ofWARS2 defects is defined.
Abstract: Mitochondrial protein synthesis involves an intricate interplay between mitochondrial DNA encoded RNAs and nuclear DNA encoded proteins, such as ribosomal proteins and aminoacyl-tRNA synthases. Eukaryotic cells contain 17 mitochondria-specific aminoacyl-tRNA synthases. WARS2 encodes mitochondrial tryptophanyl-tRNA synthase (mtTrpRS), a homodimeric class Ic enzyme (mitochondrial tryptophan-tRNA ligase; EC 6.1.1.2). Here, we report six individuals from five families presenting with either severe neonatal onset lactic acidosis, encephalomyopathy and early death or a later onset, more attenuated course of disease with predominating intellectual disability. Respiratory chain enzymes were usually normal in muscle and fibroblasts, while a severe combined respiratory chain deficiency was found in the liver of a severely affected individual. Exome sequencing revealed rare biallelic variants in WARS2 in all affected individuals. An increase of uncharged mitochondrial tRNATrp and a decrease of mtTrpRS protein content were found in fibroblasts of affected individuals. We hereby define the clinical, neuroradiological, and metabolic phenotype of WARS2 defects. This confidently implicates that mutations in WARS2 cause mitochondrial disease with a broad spectrum of clinical presentation.

Journal ArticleDOI
TL;DR: This year, two different groups reported compelling evidence that what was believed to be exclusively nuclear DNA repair polymerase, POLB, is located in the mitochondria and plays a significant role in mitochondrial BER, mtDNA integrity and mitochondrial function.

Journal ArticleDOI
TL;DR: A unique DNA binding mechanism for Abf2p where a characteristic N-terminal flag and helix are crucial for mtDNA maintenance is revealed and suggests that U-turn formation is the universal mechanism underlying mtDNA compaction induced by HMG-box proteins.
Abstract: The mitochondrial genome (mtDNA) is assembled into nucleo-protein structures termed nucleoids and maintained differently compared to nuclear DNA, the involved molecular basis remaining poorly understood. In yeast (Saccharomyces cerevisiae), mtDNA is a ∼80 kbp linear molecule and Abf2p, a double HMG-box protein, packages and maintains it. The protein binds DNA in a non-sequence-specific manner, but displays a distinct 'phased-binding' at specific DNA sequences containing poly-adenine tracts (A-tracts). We present here two crystal structures of Abf2p in complex with mtDNA-derived fragments bearing A-tracts. Each HMG-box of Abf2p induces a 90° bend in the contacted DNA, causing an overall U-turn. Together with previous data, this suggests that U-turn formation is the universal mechanism underlying mtDNA compaction induced by HMG-box proteins. Combining this structural information with mutational, biophysical and computational analyses, we reveal a unique DNA binding mechanism for Abf2p where a characteristic N-terminal flag and helix are crucial for mtDNA maintenance. Additionally, we provide the molecular basis for A-tract mediated exclusion of Abf2p binding. Due to high prevalence of A-tracts in yeast mtDNA, this has critical relevance for nucleoid architecture. Therefore, an unprecedented A-tract mediated protein positioning mechanism regulates DNA packaging proteins in the mitochondria, and in combination with DNA-bending and U-turn formation, governs mtDNA compaction.

Journal ArticleDOI
TL;DR: It is demonstrated that ATM is essential in the mitochondrial radiation responses in irradiated cells and involved in signal transduction from nucleus to the mitochondria in response to IR.
Abstract: Ionizing radiation (IR) elevates mitochondrial oxidative phosphorylation (OXPHOS) in response to the energy requirement for DNA damage responses. Reactive oxygen species (ROS) released during mitochondrial OXPHOS may cause oxidative damage to mitochondria in irradiated cells. In this paper, we investigated the association between nuclear DNA damage and mitochondrial damage following IR in normal human lung fibroblasts. In contrast to low-doses of acute single radiation, continuous exposure of chronic radiation or long-term exposure of fractionated radiation (FR) induced persistent Rad51 and γ-H2AX foci at least 24 hours after IR in irradiated cells. Additionally, long-term FR increased mitochondrial ROS accompanied with enhanced mitochondrial membrane potential (ΔΨm) and mitochondrial complex IV (cytochrome c oxidase) activity. Mitochondrial ROS released from the respiratory chain complex I caused oxidative damage to mitochondria. Inhibition of ATM kinase or ATM loss eliminated nuclear DNA damage recognition and mitochondrial radiation responses. Consequently, nuclear DNA damage activates ATM which in turn increases ROS level and subsequently induces mitochondrial damage in irradiated cells. In conclusion, we demonstrated that ATM is essential in the mitochondrial radiation responses in irradiated cells. We further demonstrated that ATM is involved in signal transduction from nucleus to the mitochondria in response to IR.

Journal ArticleDOI
TL;DR: The accumulated data suggest that evolution of satellite DNA in ants follows the concerted evolution pattern but that this process is slow in relation with other organisms, probably due to the eusociality and haplodiploidy of these insects.

Journal ArticleDOI
TL;DR: It was shown that total mitochondrial DNA content was significantly decreased in the lungs from rats exposed to SO2 and SO2 repressed the expression of complex IV and V subunits encoded by both nuclear DNA (nDNA) and mtDNA.
Abstract: Epidemiological studies show that sulfur dioxide (SO2), a major air pollutant, is associated with the morbidity and mortality of respiratory tract diseases. The aim of the present study was to determine the effects of SO2 on mitochondria and the corresponding molecular characterization in the lung. Male Wistar rats were exposed to 0, 3.5, 7, and 14 mg/m3 SO2 (4 h/day, 30 days). Mitochondrial dysfunction including decreases of cytochrome c oxidase (COX) activity and mitochondrial membrane potential (MMP) was observed in the lungs of rats after SO2 inhalation. We showed that total mitochondrial DNA (mtDNA) content was significantly decreased in the lungs from rats exposed to SO2. Furthermore, SO2 repressed the expression of complex IV and V subunits encoded by both nuclear DNA (nDNA) and mtDNA. Moreover, such changes were accompanied by depressions of three regulatory factors: peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α), nuclear respiratory factor 1 (NRF1), and mitochondrial transcription factor A (TFAM). The findings suggest that SO2 exposure induced mitochondrial dysfunction in rat lungs. Both nDNA and mtDNA are involved in SO2-induced depression of mitochondrial biogenesis in the lungs. There might be a tissue-specific response of mitochondrial biosynthesis to SO2 inhalation. Such impairment may lead to cellular dysfunction and eventually lung diseases.