scispace - formally typeset
Search or ask a question

Showing papers on "Nuclear DNA published in 2022"


Journal ArticleDOI
TL;DR: DdCBE has the potential to model mitochondrial disease mutations, correct pathogenic variants, and expand the knowledge of mitochondrial biology, but the off-target effect remained to be comprehensively investigated by additional research for their systematic effect on mtDNA as well as nuclear genome.

26 citations



Journal ArticleDOI
01 Jan 2022-Genes
TL;DR: This study identified an ancient DNA extraction protocol that resulted in the recovery of significantly more human mtDNA fragments than protocols previously used in casework, and utilizing single-stranded rather than double-Stranded library preparation resulted in increased attainment of reportable mtDNA profiles.
Abstract: The integration of massively parallel sequencing (MPS) technology into forensic casework has been of particular benefit to the identification of unknown military service members. However, highly degraded or chemically treated skeletal remains often fail to provide usable DNA profiles, even with sensitive mitochondrial (mt) DNA capture and MPS methods. In parallel, the ancient DNA field has developed workflows specifically for degraded DNA, resulting in the successful recovery of nuclear DNA and mtDNA from skeletal remains as well as sediment over 100,000 years old. In this study we use a set of disinterred skeletal remains from the Korean War and World War II to test if ancient DNA extraction and library preparation methods improve forensic DNA profiling. We identified an ancient DNA extraction protocol that resulted in the recovery of significantly more human mtDNA fragments than protocols previously used in casework. In addition, utilizing single-stranded rather than double-stranded library preparation resulted in increased attainment of reportable mtDNA profiles. This study emphasizes that the combination of ancient DNA extraction and library preparation methods evaluated here increases the success rate of DNA profiling, and likelihood of identifying historical remains.

12 citations


Journal ArticleDOI
TL;DR: It is suggested that mitochondrial play a central role in aging and may guide future research to develop potential therapeutics for mitigating aging process via increased DNA fragmentation and telomere shortening.
Abstract: Mitochondrial dysfunction plays an important role in the aging process. However, the mechanism by which this dysfunction causes aging is not fully understood. The accumulation of mutations in the mitochondrial genome (or “mtDNA”) has been proposed as a contributor. One compelling piece of evidence in support of this hypothesis comes from the PolgD257A/D257A mutator mouse (Polgmut/mut). These mice express an error‐prone mitochondrial DNA polymerase that results in the accumulation of mtDNA mutations, accelerated aging, and premature death. In this paper, we have used the Polgmut/mut model to investigate whether the age‐related biological effects observed in these mice are triggered by oxidative damage to the DNA that compromises the integrity of the genome. Our results show that mutator mouse has significantly higher levels of 8‐oxoguanine (8‐oxoGua) that are correlated with increased nuclear DNA (nDNA) strand breakage and oxidative nDNA damage, shorter average telomere length, and reduced mtDNA integrity. Based on these results, we propose a model whereby the increased level of reactive oxygen species (ROS) associated with the accumulation of mtDNA mutations in Polgmut/mut mice results in higher levels of 8‐oxoGua, which in turn lead to compromised DNA integrity and accelerated aging via increased DNA fragmentation and telomere shortening. These results suggest that mitochondrial play a central role in aging and may guide future research to develop potential therapeutics for mitigating aging process.

10 citations



Journal ArticleDOI
TL;DR: It seems that the nuclear genome data acts a vital role in species identification and is expected to be used as next-generation nuclear barcodes.
Abstract: Cymbidium is an orchid genus that has undergone rapid radiation and has high ornamental, economic, ecological and cultural importance, but its classification based on morphology is controversial. The plastid genome (plastome), as an extension of plant standard DNA barcodes, has been widely used as a potential molecular marker for identifying recently diverged species or complicated plant groups. In this study, we newly generated 237 plastomes of 50 species (at least two individuals per species) by genome skimming, covering 71.4% of members of the genus Cymbidium. Sequence‐based analyses (barcoding gaps and automatic barcode gap discovery) and tree‐based analyses (maximum likelihood, Bayesian inference and multirate Poisson tree processes model) were conducted for species identification of Cymbidium. Our work provides a comprehensive DNA barcode reference library for Cymbidium species identification. The results show that compared with standard DNA barcodes (rbcL + matK) as well as the plastid trnH‐psbA, the species identification rate of the plastome increased moderately from 58% to 68%. At the same time, we propose an optimized identification strategy for Cymbidium species. The plastome cannot completely resolve the species identification of Cymbidium, the main reasons being incomplete lineage sorting, artificial cultivation, natural hybridization and chloroplast capture. To further explore the potential use of nuclear data in identifying species, the Skmer method was adopted and the identification rate increased to 72%. It appears that nuclear genome data have a vital role in species identification and are expected to be used as next‐generation nuclear barcodes.

8 citations


Journal ArticleDOI
TL;DR: The evolution of innovations, refinement and improvement in therapeutics for determination of cfDNA fragment size and its distribution provide significant information related with pathological conditions of the cell, thus emerging as promising indicator for clinical output in medical biotechnology.
Abstract: Cell-free DNA (cfDNA) is present in numerous body fluids in addition to initiates generally from blood cells. It is undoubtedly the utmost promising tool among all components of liquid biopsy. Liquid biopsy is a specialized method investigating the nonsolid biological tissue by revealing of circulating cells, cell free DNA etc. that enter body fluids. Since, cancer cells disengage from compact tumors circulate in peripheral blood, evaluating blood of cancer patients holds the opportunities for capture and molecular level analysis of various tumor-derived constituents. Cell free DNA samples can deliver a significant perceptions into oncology, for instance tumor heterogeneity, instantaneous tumor development, response to therapy and treatment, comprising immunotherapy and mechanisms of cancer metastasis. Malignant growth at any phase can outhouse tumor cells in addition to fragments of neoplasticity causing DNA into circulatory system giving noble sign of mutation in the tumor at sampling time. Liquid biopsy distinguishes diverse blood based evolving biomarkers comprising circulating tumor cells (CTCs), circulating tumor DNA (ctDNA) or cfDNA, circulating RNA (cfRNA) and exosomes. Cell free DNA are little DNA fragments found circulating in plasma or serum, just as other fluids present in our body. Cell free DNA involves primarily double stranded nuclear DNA and mitochondrial DNA, present both on a surface level and in the lumen of vesicles. The probable origins of the tumor-inferred portion of cfDNA are apoptosis or tumor necrosis, lysis of CTCs or release of DNA from the tumor cells into circulation. The evolution of innovations, refinement and improvement in therapeutics for determination of cfDNA fragment size and its distribution provide significant information related with pathological conditions of the cell, thus emerging as promising indicator for clinical output in medical biotechnology.

7 citations


Journal ArticleDOI
TL;DR: In this paper , two methods for enhancing the efficiency of mitochondrial DNA (mtDNA) editing in mice with DddA-derived cytosine base editors (DdCBEs) are presented.
Abstract: Abstract We present two methods for enhancing the efficiency of mitochondrial DNA (mtDNA) editing in mice with DddA-derived cytosine base editors (DdCBEs). First, we fused DdCBEs to a nuclear export signal (DdCBE-NES) to avoid off-target C-to-T conversions in the nuclear genome and improve editing efficiency in mtDNA. Second, mtDNA-targeted TALENs (mitoTALENs) are co-injected into mouse embryos to cleave unedited mtDNA. We generated a mouse model with the m.G12918A mutation in the MT-ND5 gene, associated with mitochondrial genetic disorders in humans. The mutant mice show hunched appearances, damaged mitochondria in kidney and brown adipose tissues, and hippocampal atrophy, resulting in premature death.

7 citations


Journal ArticleDOI
TL;DR: This work explores how cells couple cell division and growth to DNA content and suggests a causative, not simply correlative, role for the N/C ratio in regulating cell growth and cell cycle progression.
Abstract: Though cell size varies between different cells and across species, the nuclear-to-cytoplasmic (N/C) ratio is largely maintained across species and within cell types. A cell maintains a relatively constant N/C ratio by coupling DNA content, nuclear size, and cell size. We explore how cells couple cell division and growth to DNA content. In some cases, cells use DNA as a molecular yardstick to control the availability of cell cycle regulators. In other cases, DNA sets a limit for biosynthetic capacity. Developmentally programmed variations in the N/C ratio for a given cell type suggest that a specific N/C ratio is required to respond to given physiological demands. Recent observations connecting decreased N/C ratios with cellular senescence indicate that maintaining the proper N/C ratio is essential for proper cellular functioning. Together, these findings suggest a causative, not simply correlative, role for the N/C ratio in regulating cell growth and cell cycle progression. Expected final online publication date for the Annual Review of Genetics, Volume 56 is November 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

6 citations


Journal ArticleDOI
TL;DR: The nonrandom localization of PQSs uncovered their evolutionary and functional significance in the Pisum sativum genome.
Abstract: G-quadruplexes (G4s) have been long considered rare and physiologically unimportant in vitro curiosities, but recent methodological advances have proved their presence and functions in vivo. Moreover, in addition to their functional relevance in bacteria and animals, including humans, their importance has been recently demonstrated in evolutionarily distinct plant species. In this study, we analyzed the genome of Pisum sativum (garden pea, or the so-called green pea), a unique member of the Fabaceae family. Our results showed that this genome contained putative G4 sequences (PQSs). Interestingly, these PQSs were located nonrandomly in the nuclear genome. We also found PQSs in mitochondrial (mt) and chloroplast (cp) DNA, and we experimentally confirmed G4 formation for sequences found in these two organelles. The frequency of PQSs for nuclear DNA was 0.42 PQSs per thousand base pairs (kbp), in the same range as for cpDNA (0.53/kbp), but significantly lower than what was found for mitochondrial DNA (1.58/kbp). In the nuclear genome, PQSs were mainly associated with regulatory regions, including 5′UTRs, and upstream of the rRNA region. In contrast to genomic DNA, PQSs were located around RNA genes in cpDNA and mtDNA. Interestingly, PQSs were also associated with specific transposable elements such as TIR and LTR and around them, pointing to their role in their spreading in nuclear DNA. The nonrandom localization of PQSs uncovered their evolutionary and functional significance in the Pisum sativum genome.

5 citations


Journal ArticleDOI
TL;DR: In this paper , the frequencies of combinations of nuclear and mitochondrial SNP alleles (mitonuclear combinations) in healthy individuals (n = 5375) and in a cohort of patients with Parkinson's disease (PD, n = 2210).

Journal ArticleDOI
TL;DR: The results show that NUMTs can have a serious impact on barcoding, phylogenetic, population and phylogeographic studies of Odonata, especially when the barcode is located in the cox1 gene, the most frequently used molecular marker for OdonATA.
Abstract: The use of mitochondrial markers for taxonomic identification and biodiversity monitoring is not without risks or limitations. Most importantly, the natural transfer of DNA from the mitochondria to the nucleus generates nonfunctional nuclear copies of mitochondrial DNA (NUMTs). Their abundance and size vary significantly among taxa, and NUMTs have been reported to complicate molecular studies based on mitochondrial markers in several insect orders, most prominently in Orthoptera. The significance of this phenomenon in Odonata has not yet been properly addressed. Here, we present a complete mitochondrial genome and a draft nuclear genome of Leucorrhinia albifrons (Odonata: Libellulidae), as well as NUMT and cox1 sequences from the related species Leucorrhinia dubia. We document the presence of NUMTs in the L. albifrons nuclear genome and in nuclear genomes of two other Odonata species available in public databases. Our results show that NUMTs can have a serious impact on barcoding, phylogenetic, population and phylogeographic studies of Odonata, especially when the barcode is located in the cox1 gene, the most frequently used molecular marker for Odonata. We suggest that nad1 should be used alone or in combination with cox1 to minimize unintended confusion with NUMTs. Finally, we present a mitophylogenomic analysis of Odonata and document several cases of misidentified mitochondrial genomes belonging to species different from those indicated in public databases. In conclusion, our findings represent an important step for future metabarcoding studies of Odonata based on mitochondrial DNA markers.

Journal ArticleDOI
TL;DR:
Abstract: Pimpinella species are annual, biennial, and perennial semibushy aromatic plants cultivated for folk medicine, pharmaceuticals, food, and spices. The karyology and genome size of 17 populations of 16 different Pimpinella species collected from different locations in Iran were analyzed for inter-specific karyotypic and genome size variations. For karyological studies, root tips were squashed and painted with a DAPI solution (1 mg/ml). For flow cytometric measurements, fresh leaves of the standard reference (Solanum lycopersicum cv. Stupick, 2C DNA = 1.96 pg) and the Pimpinella samples were stained with propidium iodide. We identified two ploidy levels: diploid (2x) and tetraploid (4x), as well as five metaphase chromosomal counts of 18, 20, 22, 24, and 40. 2n = 24 is reported for the first time in the Pimpinella genus, and the presence of a B-chromosome is reported for one species. The nuclear DNA content ranged from 2C = 2.48 to 2C = 5.50 pg, along with a wide range of genome sizes between 1212.72 and 2689.50 Mbp. The average monoploid genome size and the average value of 2C DNA/chromosome were not proportional to ploidy. There were considerable positive correlations between 2C DNA and total chromatin length and total chromosomal volume. The present study results enable us to classify the genus Pimpinella with a high degree of morphological variation in Iran. In addition, cytological studies demonstrate karyotypic differences between P. anthriscoides and other species of Pimpinella, which may be utilized as a novel identification key to affiliate into a distinct, new genus – Pseudopimpinella.

Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors reported that herpes simplex virus 1 (HSV-1) infection caused the release of cGAS from the chromatin into the nuclear soluble fraction, which also sensed viral DNA, produced cGAMP and induced mRNA expression of type I IFN and interferon-stimulated genes.
Abstract: The DNA sensor cGAS detects cytosolic DNA and instigates type I interferon (IFN) expression. Recent studies find that cGAS also localizes in the nucleus and binds the chromatin. Despite the mechanism controlling nuclear cGAS activation is well elucidated, whether nuclear cGAS participates in DNA sensing is unclear. Here, we report that herpes simplex virus 1 (HSV-1) infection caused the release of cGAS from the chromatin into the nuclear soluble fraction. Like its cytosolic counterpart, the leaked nuclear soluble cGAS also sensed viral DNA, produced cGAMP, and induced mRNA expression of type I IFN and interferon-stimulated genes. Consistently, the nuclear soluble cGAS limited HSV-1 infection. Furthermore, enzyme-deficient mutation (D307A) or cGAS inhibitor RU.251 abolished nuclear cGAS-mediated innate immune responses, suggesting that enzymatic activity is also required for nuclear soluble cGAS. Taken all together, our study demonstrates that nuclear soluble cGAS acts as a nuclear DNA sensor detecting nuclear-replicating DNA viruses.

Journal ArticleDOI
TL;DR: This paper presents a detailed protocol describing cybrid generation, selection, and characterization of mitochondria derived from patients with mitochondrial disorders (MDs) and nuclei from rho0 cells, to verify whether a defect is mtDNA- or nDNA-related.
Abstract: Deficiency of the mitochondrial respiratory chain complexes that carry out oxidative phosphorylation (OXPHOS) is the biochemical marker of human mitochondrial disorders. From a genetic point of view, the OXPHOS represents a unique example because it results from the complementation of two distinct genetic systems: nuclear DNA (nDNA) and mitochondrial DNA (mtDNA). Therefore, OXPHOS defects can be due to mutations affecting nuclear and mitochondrial encoded genes. The groundbreaking work by King and Attardi, published in 1989, showed that human cell lines depleted of mtDNA (named rho0) could be repopulated by exogenous mitochondria to obtain the so-called "transmitochondrial cybrids." Thanks to these cybrids containing mitochondria derived from patients with mitochondrial disorders (MDs) and nuclei from rho0 cells, it is possible to verify whether a defect is mtDNA- or nDNA-related. These cybrids are also a powerful tool to validate the pathogenicity of a mutation and study its impact at a biochemical level. This paper presents a detailed protocol describing cybrid generation, selection, and characterization.

Journal ArticleDOI
TL;DR: Mitochondrial and nuclear DNA sequences revealed significant genetic differentiation between the farmed populations and adjacent natural populations from rocky reefs, in agreement with previous results obtained using microsatellites.
Abstract: Abstract Large-scale farming of Undaria pinnatifida is conducted in northern China. Conspicuous natural populations of this alga are distributed on rocky shores in this region. However, the genetic relationship between U. pinnatifida from China and native populations in other countries remains largely uncertain. We obtained sequences for the mitochondrial cox3 and tatC–tLeu regions and the internal transcribed spacer one of nuclear ribosomal DNA from representative natural and farmed populations of U. pinnatifida in China. We analyzed genetic diversity, and evaluated the genetic relationship between Chinese populations and Japanese and Korean populations. The mitochondrial and nuclear DNA sequences revealed high genetic diversity in most Chinese populations. Unique mitochondrial haplotypes were detected in the Gouqi Island population consistent with historical records of a native population on the island. Phylogenetic analyses derived from the mitochondrial DNA sequences revealed that the Chinese samples were classifiable as the Continental and Northern Japan types. All natural populations from rocky reefs in northern China were grouped with the Continental type and all farmed populations with the Northern Japan type. Mitochondrial and nuclear DNA sequences revealed significant genetic differentiation between the farmed populations and adjacent natural populations from rocky reefs, in agreement with previous results obtained using microsatellites.

Journal ArticleDOI
TL;DR: The data suggest that GIPs may partly contribute to the spatio-temporal recruitment of RAD51 at the nuclear periphery, and it is shown that G IP1 and GIP2 act redundantly to maintain genome stability.
Abstract: The maintenance of genetic information is important in eukaryotes notably through mechanisms occurring at the nuclear periphery where inner nuclear membrane proteins and nuclear pore-associated components are key factors regulating the DNA damage response (DDR). However, this aspect of DDR regulation is still poorly documented in plants. We addressed here how genomic stability is impaired in the gamma-tubulin complex component 3-interacting protein (gip1gip2) double mutants showing defective nuclear shaping. Using neutral comet assays for DNA double-strand breaks (DSBs) detection, we showed that GIP1 and GIP2 act redundantly to maintain genome stability. At the cellular level, γ-H2AX foci in gip1gip2 were more abundant and heterogeneous in their size compared to wild-type (WT) in root meristematic nuclei, indicative of constitutive DNA damage. This was linked to a constitutive activation of the DDR in the gip1gip2 mutant, with more emphasis on the homologous recombination (HR) repair pathway. In addition, we noticed the presence of numerous RAD51 foci which did not colocalize with γ-H2AX foci. The expression of GIP1-GFP in the double mutant rescued the cellular response to DNA damage, leading to the systematic colocalization of RAD51 and γ-H2AX foci. Interestingly, a significant proportion of RAD51 foci colocalized with GIP1-GFP at the nuclear periphery. Altogether, our data suggest that GIPs may partly contribute to the spatio-temporal recruitment of RAD51 at the nuclear periphery.

Journal ArticleDOI
TL;DR: In this paper , the authors found 153 numts in the nuclear genome and the frequency of three mammalian-wide interspersed repeats were increased in the proximity of numts, which strengthened the theory that there is a link between DNA structural instability and numt integration.

Journal ArticleDOI
TL;DR: In this paper , the roots were separated into groups based on nuclei present: Group I (1-10 nuclei), Group II (11-20 nuclei, Group III (21-30 nuclei) and Group IV (31-40 nuclei).

Journal ArticleDOI
TL;DR: This study illustrates how efforts to obtain barcode sequence information from natural history collection specimens may be combined and are a way of implementing barcoding inventories of scientific collection material.
Abstract: A growing number of publications presenting results from sequencing natural history collection specimens reflect the importance of DNA sequence information from such samples. Ancient DNA extraction and library preparation methods in combination with target gene capture are a way of unlocking archival DNA, including from formalin-fixed wet-collection material. Here we report on an experiment, in which we used an RNA bait set containing baits from a wide taxonomic range of species for DNA hybridisation capture of nuclear and mitochondrial targets for analysing natural history collection specimens. The bait set used consists of 2,492 mitochondrial and 530 nuclear RNA baits and comprises specific barcode loci of diverse animal groups including both invertebrates and vertebrates. The baits allowed to capture DNA sequence information of target barcode loci from 84% of the 37 samples tested, with nuclear markers being captured more frequently and consensus sequences of these being more complete compared to mitochondrial markers. Samples from dry material had a higher rate of success than wet-collection specimens, although target sequence information could be captured from 50% of formalin-fixed samples. Our study illustrates how efforts to obtain barcode sequence information from natural history collection specimens may be combined and are a way of implementing barcoding inventories of scientific collection material.

Journal ArticleDOI
TL;DR: In this article , a typical in-house process for extracting both types of cir-DNAs from a single plasma sample and assessed their usefulness in discriminating type 2 diabetes mellitus patients from healthy individuals to eliminate the prevailing dispute about their discriminative role.

Journal ArticleDOI
TL;DR: In this article , a cell-free reconstruction system from the cytoplasmic extract of unfertilized eggs of Xenopus tropicalis to that of the sister species X. laevis was presented.
Abstract: Size of the nucleus, a membrane‐bound organelle for DNA replication and transcription in eukaryotic cells, varies to adapt nuclear functions to the surrounding environment. Nuclear size strongly correlates with cytoplasmic size and genomic content. Previous studies using Xenopus laevis have unraveled two modes, cytoplasmic and chromatin‐based mechanisms, for controlling nuclear size. However, owing to limited comparative analyses of the mechanisms among eukaryotic species, the contribution of each mechanism in controlling nuclear size has not been comprehensively elucidated. Here, we compared the relative contribution utilizing a cell‐free reconstruction system from the cytoplasmic extract of unfertilized eggs of Xenopus tropicalis to that of the sister species X. laevis. In this system, interphase nuclei were reconstructed in vitro from sperm chromatin and increased in size throughout the incubation period. Using extracts from X. tropicalis, growth rate of the reconstructed nuclei was decreased by obstructing the effective cytoplasmic space, decreasing DNA quantity, or inhibiting molecules involved in various cytoplasmic mechanisms. Although these features are qualitatively identical to that shown by the extract of X. laevis, the sensitivities of experimental manipulation for each cellular parameter were different between the extracts from two Xenopus species. These quantitative differences implied that the contribution of each mode to expansion of the nuclear envelope is coordinated in a species‐specific manner, which sets the species‐specific nuclear size for in vivo physiological function.

Journal ArticleDOI
TL;DR: The size scaling relationship among three parameters, nuclear size, cell size, and genomic content, is analyzed in measured datasets of terminally differentiated erythrocytes of five Anura frogs and collected datasets of different species classes from published papers to hypothesized that the observed specific features in nuclear size scaling are achieved by the weak interaction of the chromatin with the nuclear membrane seen in frog ery throatcytes.
Abstract: In eukaryotes, the cell has the ability to modulate the size of the nucleus depending on the surrounding environment, to enable nuclear functions such as DNA replication and transcription. From previous analyses of nuclear size scaling in various cell types and species, it has been found that eukaryotic cells have a conserved scaling rule, in which the nuclear size correlates with both cell size and genomic content. However, there are few studies that have focused on a certain cell type and systematically analyzed the size scaling properties in individual species (intra-species) and among species (inter-species), and thus, the difference in the scaling rules among cell types and species is not well understood. In the present study, we analyzed the size scaling relationship among three parameters, nuclear size, cell size, and genomic content, in our measured datasets of terminally differentiated erythrocytes of five Anura frogs and collected datasets of different species classes from published papers. In the datasets of isolated erythrocytes from individual frogs, we found a very weak correlation between the measured nuclear and cell cross-sectional areas. Within the erythrocytes of individual species, the correlation of the nuclear area with the cell area showed a very low hypoallometric relationship, in which the relative nuclear size decreased when the cell size increased. These scaling trends in intra-species erythrocytes are not comparable to the known general correlation in other cell types. When comparing parameters across species, the nuclear areas correlated with both cell areas and genomic contents among the five frogs and the collected datasets in each species class. However, the contribution of genomic content to nuclear size determination was smaller than that of the cell area in all species classes. In particular, the estimated degree of the contribution of genomic content was greater in the amphibian class than in other classes. Together with our imaging analysis of structural components in nuclear membranes, we hypothesized that the observed specific features in nuclear size scaling are achieved by the weak interaction of the chromatin with the nuclear membrane seen in frog erythrocytes.

Journal ArticleDOI
TL;DR: In this article , the effects of pre-treatment and washing of FTB were investigated and their effects on isolated DNA characteristics including DNA integrity, quality, quantity, mitochondrial (mt), and nuclear (n) levels were investigated.
Abstract: DNA isolations from the whole blood are commonly performed to obtain DNA for molecular research and diagnostics. Generally, blood samples are taken into anticoagulant tubes and stored in deep freezers until DNA isolation. In fresh blood, pretreatments or leukocytes preparations can be performed and suggested for advanced DNA isolation. However, similar applications in freeze-thawed blood (FTB) have not been shown yet. In the study, centrifugation and washing of FTB were applied as pretreatment before DNA isolations, and their effects on isolated DNA characteristics including DNA integrity, quality, quantity, mitochondrial (mt), and nuclear (n) DNA levels were investigated. Microscopic and flow cytometric analyses were used to check leukocyte integrity in FTB. Spectrophotometric analysis was carried out to determine DNA quality and quantity in the isolated DNA samples. Real-time PCR analyses were used to check mtDNA/nDNA ratio and DNA integrity at the quantitative level. Cell integrity analyses showed that most of the leukocytes were intact in FTB. Therefore, centrifugation enabled intact leukocytes and nuclear pellets in FTB to be harvested and washed and could be applied as pretreatment before DNA isolations. PBS and water washing of FTB led to obtaining high-quality DNA without changing the nDNA/mtDNA ratio and DNA integrity. TE washing of FTB increased DNA quality and enriched nDNA level about 2-fold without changing DNA integrity. Centrifugation and harvesting of a higher volume of FTB increased isolated DNA yield and quality but decreased DNA integrity and nDNA level. To conclude, the pretreatments of FTB had the advantage to obtain DNA with high-quality and high-quantity and can be used before DNA isolation, but they may affect mtDNA/nDNA ratios and DNA integrity levels. The relevant pre-treatment used in the present study can be used and improved for desired DNA isolation from FTB samples.

Journal ArticleDOI
TL;DR: In this article , the importance of both the nuclear and mitochondrial DNA in resolving phylogenetic relationships and species histories of the Eptesicus (H.) species was examined at the whole-genome level.
Abstract: Abstract Understanding mechanisms involved in speciation can be challenging, especially when hybridization or introgression blurs species boundaries. In bats, resolving relationships of some closely related groups has proved difficult due subtle interspecific variation both in morphometrics and molecular data sets. The endemic South American Histiotus bats, currently considered a subgenus of Eptesicus, harbor unresolved phylogenetic relationships and of those is a trio consisting of two closely related species: Eptesicus (Histiotus) macrotus and Eptesicus (Histiotus) montanus, and their relationship with a third, Eptesicus (Histiotus) magellanicus. The three sympatric species bear marked resemblance to each other, but can be differentiated morphologically. Furthermore, previous studies have been unable to differentiate the species from each other at a molecular level. In order to disentangle the phylogenetic relationships of these species, we examined the differentiation patterns and evolutionary history of the three Eptesicus (H.) species at the whole-genome level. The nuclear DNA statistics between the species suggest strong gene flow and recent hybridization between E. (H.) montanus and E. (H.) macrotus, whereas E. (H.) magellanicus shows a higher degree of isolation. In contrast, mitochondrial DNA shows a closer relationship between E. (H.) magellanicus and E. (H.) montanus. Opposing patterns in mtDNA and nuclear markers are often due to differences in dispersal, and here it could be both as a result of isolation in refugia during the last glacial maximum and female philopatry and male-biased dispersal. In conclusion, this study shows the importance of both the nuclear and mitochondrial DNA in resolving phylogenetic relationships and species histories.

Journal ArticleDOI
TL;DR: In this paper , a mtDNA base-pair mutation associated with neuropathy, ataxia, and retinitis pigmentosa and Leigh syndrome and the large-scale mtDNA deletion associated with Kearns-Sayre syndrome are reviewed, along with implications for the nurse practitioner in primary or specialty care.
Abstract: Mitochondrial disorders arise from DNA mutations in either the mitochondrial DNA (mtDNA) or nuclear DNA genomes. This article focuses on a mtDNA base-pair mutation associated with neuropathy, ataxia, and retinitis pigmentosa and Leigh syndrome and the large-scale mtDNA deletion associated with Kearns–Sayre syndrome. Disease sequelae and management strategies are reviewed, along with implications for the nurse practitioner in primary or specialty care.

Journal ArticleDOI
01 Sep 2022-Gene
TL;DR: In this paper , the relationship between the retrograde communication from the mitochondria to the nucleus and its ultimate effect on ageing has been elucidated, and the results indicated that dct-15 interacted with the mitochondrial DNA polymorphisms in COX1 and is associated with ageing.

Journal ArticleDOI
TL;DR: In this paper, the authors developed an in vitro model of mouse microglial cell (BV-2) with starvation-induced autophagy, in which cfDNA was isolated from the cell supernatant by ultrafiltration (UF) and column-based commercial kit (CC), respectively.

Journal ArticleDOI
01 Apr 2022-Genome
TL;DR: In this paper , the authors found no correlation between mean muscle DNA content and other muscle structural measurements, such as the number of nuclei per millimeter of fiber, myonuclear domain, and fiber cross-sectional area.
Abstract: The avian pectoralis muscle demonstrates plasticity with regard to size, so that temperate birds facing winter conditions or birds enduring a migration bout tend to have significant increases in the size and mass of this tissue due to muscular hypertrophy. Myonuclear domain (MND), the volume of cytoplasm a myonuclei services, in the pectoralis muscle of birds seems to be altered during thermal stress or changing seasons. However, there is no information available regarding muscle DNA content or ploidy level within the avian pectoralis. Changes in muscle DNA content can be used in this tissue to aid in size and mass changes. Here, we hypothesized that long-distance migrants or temperate residents would use the process of endoreduplication to aid in altering muscle size. Mostly contradictory to our hypotheses, we found no differences in the mean muscle DNA content in any of the 62 species of birds examined in this study. We also found no correlations between mean muscle DNA content and other muscle structural measurements, such as the number of nuclei per millimeter of fiber, myonuclear domain, and fiber cross-sectional area. Thus, while avian muscle seems more phenotypically plastic than mammalian muscle, the biological processes surrounding myonuclear function may be more closely related to those seen in mammals.

Journal ArticleDOI
29 Oct 2022-Genes
TL;DR: In this paper , a study was conducted to evaluate the cytogenetic analyses in 115 native and wild populations from eleven Aegilops species using their nuclear DNA quantification, which showed that the variation in intraspecific genome size was very low in diploid and tetraploid populations; this means that the low variation is not dependent on geographic and climatic parameters.
Abstract: The genera Triticum and Aegilops have been considered as the main gene pool of wheat due to their features, such as tolerance of all types of abiotic and biotic stresses. This study was conducted to evaluate the cytogenetic analyses in 115 native and wild populations from eleven Aegilops species using their nuclear DNA quantification. Mean 2C nuclear DNA contents of different ploidy levels in the wild wheat of Turkey and Iran were measured using the flow cytometry technique. The obtained results showed that the mean nuclear DNA content in diploid species varied from 10.09 pg/2C (Ae. umbellulata) to 10.95 pg/2C (Ae. speltoides var. ligustica) in Turkey. In Iranian diploids, the mean nuclear DNA content varied from 10.20 pg/2C (Ae. taushii) to 11.56 pg/2C (Ae. speltoides var. ligustica). This index in the tetraploid species of Turkey varied from 18.09 pg/2C (Ae. cylindrica) to 21.65 pg/2C (Ae. triaristata), and in Iranian species, it was from 18.61 pg/2C (Ae. cylindrica) to 21.75 pg/2C (Ae. columnaris). On the other hand, in the hexaploid species of Turkey, this index varied from 31.59 pg/2C (Ae. crassa) to 31.81 pg/2C (Ae. cylindrica); in the Iranian species, it varied from 32.58 pg/2C (Ae. cylindrica) to 33.97 pg/2C (Ae. crassa). There was a significant difference in the DNA content of Turkey and Iran diploid as well as tetraploid species; however, in hexaploid species, the difference was not significant. It was concluded that the variation in intraspecific genome size was very low in diploid and tetraploid populations; this means that the low variation is not dependent on geographic and climatic parameters. On the other hand, the interspecific variation is significant at the diploid and tetraploid populations. It is generally very difficult to distinguish Aegilops species from each other in natural conditions; meanwhile, in this study, all species could be, easily, quickly and unambiguously, distinguished and separated using the FCM technique.