scispace - formally typeset
Search or ask a question
Topic

Nuclear DNA

About: Nuclear DNA is a research topic. Over the lifetime, 3933 publications have been published within this topic receiving 185830 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This protocol describes the use of Hoechst 33342 to label nuclear DNA of cells grown in culture and the results show that on binding to DNA, the fluorescence greatly increases.
Abstract: A number of fluorescent stains are available that label DNA and allow easy visualization of the nucleus in interphase cells and chromosomes in mitotic cells. One advantage of Hoechst 33342 is that it is membrane permeant and, thus, can stain live cells. Hoechst 33342 binds to adenine-thymine-rich regions of DNA in the minor groove. On binding to DNA, the fluorescence greatly increases. This protocol describes the use of Hoechst 33342 to label nuclear DNA of cells grown in culture.

73 citations

Journal ArticleDOI
TL;DR: The roles of mitochondria in cancer with respect to mutations and apoptosis are elaborated and mitochondria-targeting strategies as cancer therapies to enhance the killing of cancer cells are discussed.
Abstract: Mitochondria play pivotal roles in most eukaryotic cells, ranging from energy production to regulation of apoptosis. As sites of cellular respiration, mitochondria experience accumulation of reactive oxygen species (ROS) due to damage in electron transport chain carriers. Mutations in mitochondrial DNA (mtDNA) as well as nuclear DNA are reported in various cancers. Mitochondria have a dual role in cancer: the development of tumors due to mutations in mitochondrial genome and the generation of ROS. Impairment in the mitochondria-regulated apoptosis pathway accelerates tumorigenesis. Numerous strategies targeting mitochondria have been developed to induce the mitochondrial (i.e. intrinsic) apoptosis pathway in cancer cells. This review elaborates the roles of mitochondria in cancer with respect to mutations and apoptosis and discusses mitochondria-targeting strategies as cancer therapies to enhance the killing of cancer cells.

73 citations

Journal ArticleDOI
TL;DR: Hypervariability of plastid sequence homologies was identified in the nuclear genomes of Spinacea oleracea and Beta vulgaris and individual plants were shown to possess a unique spectrum of nuclear sequences with ptDNA homology, apparently extended to somatic variation in B. vulgaris.
Abstract: A wide-ranging examination of plastid (pt)DNA sequence homologies within higher plant nuclear genomes (promiscuous DNA) was undertaken. Digestion with methylation-sensitive restriction enzymes and Southern analysis was used to distinguish plastid and nuclear DNA in order to assess the extent of variability of promiscuous sequences within and between plant species. Some species, such as Gossypium hirsutum (cotton), Nicotiana tabacum (tobacco), and Chenopodium quinoa, showed homogenity of these sequences, while intraspecific sequence variation was observed among different cultivars of Pisum sativum (pea), Hordeum vulgare (barley), and Triticum aestivum (wheat). Hypervariability of plastid sequence homologies was identified in the nuclear genomes of Spinacea oleracea (spinach) and Beta vulgaris (beet), in which individual plants were shown to possess a unique spectrum of nuclear sequences with ptDNA homology. This hypervariability apparently extended to somatic variation in B. vulgaris. No sequences with ptDNA homology were identified by this method in the nuclear genome of Arabidopsis thaliana.

73 citations

Journal ArticleDOI
01 Dec 2019
TL;DR: Persistent mitochondrial DNA stress is shown to upregulate nuclear DNA damage and repair responses via activation of the cGAS–STING pathway and a subset of interferon-stimulated genes.
Abstract: The mammalian genome comprises nuclear DNA (nDNA) derived from both parents and mitochondrial DNA (mtDNA) that is maternally inherited and encodes essential proteins required for oxidative phosphorylation. Thousands of copies of the circular mtDNA are present in most cell types that are packaged by TFAM into higher-order structures called nucleoids1. Mitochondria are also platforms for antiviral signalling2 and, due to their bacterial origin, mtDNA and other mitochondrial components trigger innate immune responses and inflammatory pathology2,3. We showed previously that cytoplasmic release of mtDNA activates the cGAS–STING–TBK1 pathway resulting in interferon-stimulated gene (ISG) expression that promotes antiviral immunity4. Here, we find that persistent mtDNA stress is not associated with basally activated NF-κB signalling or interferon gene expression typical of an acute antiviral response. Instead, a specific subset of ISGs that includes Parp9 remains activated by the unphosphorylated form of ISGF3 that enhances nDNA damage and repair responses. In cultured primary fibroblasts and cancer cells, the chemotherapeutic drug doxorubicin causes mtDNA damage and release, which leads to cGAS–STING–dependent ISG activation. In addition, mtDNA stress in TFAM-deficient mouse melanoma cells produces tumours that are more resistant to doxorubicin in vivo. Finally, Tfam+/− mice exposed to ionizing radiation exhibit enhanced nDNA repair responses in spleen. Therefore, we propose that damage to and subsequent release of mtDNA elicits a protective signalling response that enhances nDNA repair in cells and tissues, suggesting that mtDNA is a genotoxic stress sentinel. Persistent mitochondrial DNA stress is shown to upregulate nuclear DNA damage and repair responses via activation of the cGAS–STING pathway and a subset of interferon-stimulated genes.

73 citations

Journal ArticleDOI
TL;DR: There are many open questions regarding replication initiation, termination and physiological factors determining mtDNA organisation and replication mode, however, common themes in mtDNA maintenance across eukaryotic kingdoms can provide valuable lessons for future work.
Abstract: The organisation of mammalian mitochondrial DNA (mtDNA) is more complex than usually assumed. Despite often being depicted as a simple circle, the topology of mtDNA can vary from supercoiled monomeric circles over catenanes and oligomers to complex multimeric networks. Replication of mtDNA is also not clear cut. Two different mechanisms of replication have been found in cultured cells and in most tissues: a strand-asynchronous mode involving temporary RNA coverage of one strand, and a strand-coupled mode rather resembling conventional nuclear DNA replication. In addition, a recombination-initiated replication mechanism is likely to be associated with the multimeric mtDNA networks found in human heart. Although an insight into the general principles and key factors of mtDNA organisation and maintenance has been gained over the last few years, there are many open questions regarding replication initiation, termination and physiological factors determining mtDNA organisation and replication mode. However, common themes in mtDNA maintenance across eukaryotic kingdoms can provide valuable lessons for future work.

72 citations


Network Information
Related Topics (5)
Gene
211.7K papers, 10.3M citations
84% related
Gene expression
113.3K papers, 5.5M citations
82% related
DNA
107.1K papers, 4.7M citations
80% related
Genome
74.2K papers, 3.8M citations
78% related
Regulation of gene expression
85.4K papers, 5.8M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202361
202284
202177
202064
201966
201862