scispace - formally typeset
Search or ask a question
Topic

Nuclear matter

About: Nuclear matter is a research topic. Over the lifetime, 10180 publications have been published within this topic receiving 248261 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a new improved relativistic mean-field effective interaction with explicit density dependence of the meson-nucleon couplings was proposed. But it was only applied to the analysis of very recent data on superheavy nuclei.
Abstract: We adjust a new improved relativistic mean-field effective interaction with explicit density dependence of the meson-nucleon couplings. The effective interaction DD-ME2 is tested in relativistic Hartree-Bogoliubov and quasiparticle random-phase approximation (QRPA) calculations of nuclear ground states and properties of excited states, in calculation of masses, and it is applied to the analysis of very recent data on superheavy nuclei.

526 citations

Journal ArticleDOI
TL;DR: In this article, the authors combine the many-body theory and the low-density expansion developed by Brueckner, Bethe and others to investigate several properties of the ground state and of single-particle excited states of symmetric nuclear matter.

522 citations

Journal ArticleDOI
TL;DR: The relativistic Hartree equations for spherical nuclei were derived from a relativistically nuclear quantum field theory using a coordinate-space Green function approach in this paper, which represented the mean-field approximation for a finite nuclear system.

520 citations

Journal ArticleDOI
TL;DR: In this article, the authors present the first observation of strangeness enhancement in high-multiplicity proton-proton collisions, showing that the integrated yields of strange and multi-strange particles relative to pions increases significantly with the event charged-particle multiplicity.
Abstract: At sufficiently high temperature and energy density, nuclear matter undergoes a transition to a phase in which quarks and gluons are not confined: the quark-gluon plasma (QGP). Such an exotic state of strongly interacting quantum chromodynamics matter is produced in the laboratory in heavy nuclei high-energy collisions, where an enhanced production of strange hadrons is observed. Strangeness enhancement, originally proposed as a signature of QGP formation in nuclear collisions, is more pronounced for multi-strange baryons. Several effects typical of heavy-ion phenomenology have been observed in high-multiplicity proton-proton (pp) collisions, but the enhanced production of multi-strange particles has not been reported so far. Here we present the first observation of strangeness enhancement in high-multiplicity proton-proton collisions. We find that the integrated yields of strange and multi-strange particles, relative to pions, increases significantly with the event charged-particle multiplicity. The measurements are in remarkable agreement with the p-Pb collision results, indicating that the phenomenon is related to the final system created in the collision. In high-multiplicity events strangeness production reaches values similar to those observed in Pb-Pb collisions, where a QGP is formed.

500 citations

Journal ArticleDOI
TL;DR: In this paper, the density dependence for σ-, ω- and ρ-meson coupling is obtained by fitting to properties of nuclear matter and some finite nuclei.

488 citations


Network Information
Related Topics (5)
Quark
43.3K papers, 951K citations
93% related
Quantum chromodynamics
47.1K papers, 1.2M citations
92% related
Neutrino
45.9K papers, 1M citations
91% related
Supersymmetry
29.7K papers, 1.1M citations
89% related
Gauge theory
38.7K papers, 1.2M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023132
2022299
2021252
2020268
2019256
2018240