scispace - formally typeset
Search or ask a question
Topic

Nuclear matter

About: Nuclear matter is a research topic. Over the lifetime, 10180 publications have been published within this topic receiving 248261 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors examined the smallness of the three-body effect in nuclear matter and showed that second-order effects are larger, with the net result of ≈ 2.5 MeV per particle additional binding at the saturation density.

66 citations

Journal ArticleDOI
TL;DR: In this paper, a fully relativistic Landau Fermi liquid theory based on the Quantum Hadro-Dynamics (QHD) effective field picture of nuclear matter is discussed.
Abstract: We discuss a fully relativistic Landau Fermi liquid theory based on the Quantum Hadro-Dynamics ($QHD$) effective field picture of Nuclear Matter ({\it NM}). From the linearized kinetic equations we get the dispersion relations of the propagating collective modes. We focus our attention on the dynamical effects of the interplay between scalar and vector channel contributions. A beautiful ``mirror'' structure in the form of the dynamical response in the isoscalar/isovector degree of freedom is revealed, with a complete parallelism in the role respectively played by the compressibility and the symmetry energy. All that strongly supports the introduction of an explicit coupling to the scalar-isovector channel of the nucleon-nucleon interaction. In particular we study the influence of this coupling (to a $\delta$-meson-like effective field) on the collective response of asymmetric nuclear matter ($ANM$). Interesting contributions are found on the propagation of isovector-like modes at normal density and on an expected smooth transition to isoscalar-like oscillations at high baryon density. Important ``chemical'' effects on the neutron-proton structure of the mode are shown. For dilute $ANM$ we have the isospin distillation mechanism of the unstable isoscalar-like oscillations, while at high baryon density we predict an almost pure neutron wave structure of the propagating sounds.

66 citations

Journal ArticleDOI
TL;DR: In this article, the authors present predictions for neutron star tidal deformabilities obtained from a Bayesian analysis of the nuclear equation of state, assuming a minimal model at high-density that neglects the possibility of phase transitions.
Abstract: We present predictions for neutron star tidal deformabilities obtained from a Bayesian analysis of the nuclear equation of state, assuming a minimal model at high-density that neglects the possibility of phase transitions. The Bayesian posterior probability distribution is constructed from priors obtained from microscopic many-body theory based on realistic two- and three-body nuclear forces, while the likelihood functions incorporate empirical information about the equation of state from nuclear experiments. The neutron star crust equation of state is constructed from the liquid drop model, and the core-crust transition density is found by comparing the energy per baryon in inhomogeneous matter and uniform nuclear matter. From the cold $ \beta$-equilibrated neutron star equation of state, we then compute neutron star tidal deformabilities as well as the mass-radius relationship. Finally, we investigate correlations between the neutron star tidal deformability and properties of finite nuclei.

66 citations

Journal ArticleDOI
TL;DR: In this article, a summary of the basic theoretical concepts of QCD, namely chiral symmetry, heavy quark spin symmetry, and the effective Lagrangian approach, are reviewed with a summary on heavy hadrons in nuclear medium.

66 citations

Journal ArticleDOI
TL;DR: In this article, high-energy electron scattering measurements were used to isolate nucleon pairs in short-distance, high-momentum configurations, corresponding to relative momenta above 400 MeV/c.
Abstract: The strong nuclear interaction between nucleons (protons and neutrons) is the effective force that holds the atomic nucleus together. This force stems from fundamental interactions between quarks and gluons (the constituents of nucleons) that are described by the equations of Quantum Chromodynamics (QCD). However, as these equations cannot be solved directly, physicists resort to describing nuclear interactions using effective models that are well constrained at typical inter-nucleon distances in nuclei but not at shorter distances. This limits our ability to describe high-density nuclear matter such as in the cores of neutron stars. Here we use high-energy electron scattering measurements that isolate nucleon pairs in short-distance, high-momentum configurations thereby accessing a kinematical regime that has not been previously explored by experiments, corresponding to relative momenta above 400 MeV/c. As the relative momentum between two nucleons increases and their separation thereby decreases, we observe a transition from a spin-dependent tensor-force to a predominantly spin-independent scalar-force. These results demonstrate the power of using such measurements to study the nuclear interaction at short-distances and also support the use of point-like nucleons with two- and three-body effective interactions to describe nuclear systems up to densities several times higher than the central density of atomic nuclei.

66 citations


Network Information
Related Topics (5)
Quark
43.3K papers, 951K citations
93% related
Quantum chromodynamics
47.1K papers, 1.2M citations
92% related
Neutrino
45.9K papers, 1M citations
91% related
Supersymmetry
29.7K papers, 1.1M citations
89% related
Gauge theory
38.7K papers, 1.2M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023132
2022299
2021252
2020268
2019256
2018240