scispace - formally typeset
Search or ask a question
Topic

Nuclear matter

About: Nuclear matter is a research topic. Over the lifetime, 10180 publications have been published within this topic receiving 248261 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the effects of parton energy loss in cold nuclear matter on heavy-quarkonium suppression in p-A collisions were studied, and it was shown from first principles that the medium induced energy loss scales as E.
Abstract: The effects of parton energy loss in cold nuclear matter on heavy-quarkonium suppression in p-A collisions are studied. It is shown from first principles that at large quarkonium energy E and small production angle in the nucleus rest frame, the medium- induced energy loss scales as E. Using this result, a phenomenological model depending on a single free parameter is able to reproduce J/ψ andsuppression data in a broad x F - range and at various center-of-mass energies. These results strongly support energy loss as the dominant effect in heavy-quarkonium suppression in p-A collisions. Predictions for J/ψ andsuppression in p-Pb collisions at the LHC are made. It is argued that parton energy loss scaling as E should generally apply to hadron production in p-A collisions, such as light hadron or open charm production.

205 citations

Journal ArticleDOI
TL;DR: In this paper, the Sakai-Sugimoto model at finite temperature and baryon chemical potential was analyzed and it was shown that the dominant phase has broken chiral symmetry.
Abstract: We analyze the phases of the Sakai-Sugimoto model at finite temperature and baryon chemical potential. Baryonic matter is represented either by 4-branes in the 8-branes or by strings stretched from the 8-branes to the horizon. We find the explicit configurations and use them to determine the phase diagram and equation of state of the model. The 4-brane configuration (nuclear matter) is always preferred to the string configuration (quark matter), and the latter is also unstable to density fluctuations. In the deconfined phase the phase diagram has three regions corresponding to the vacuum, quark-gluon plasma, and nuclear matter, with a first-order and a second-order phase transition separating the phases. We find that for a large baryon number density, and at low temperatures, the dominant phase has broken chiral symmetry. This is in qualitative agreement with studies of QCD at high density.

204 citations

Journal ArticleDOI
TL;DR: In this article, the authors focus on the BCS-BEC crossover in ultra-cold Fermi gases and nuclear matter, and discuss the mean field treatment of the superfluid phase, both for homogeneous and inhomogeneous systems.

204 citations

Journal ArticleDOI
TL;DR: In this paper, the mass and radius of the millisecond pulsar PSR J0030+0451 have been inferred via pulse-profile modeling of X-ray data obtained by NASA's Neutron Star Interior Composition Explorer (NICER) mission.
Abstract: Both the mass and radius of the millisecond pulsar PSR J0030+0451 have been inferred via pulse-profile modeling of X-ray data obtained by NASA's Neutron Star Interior Composition Explorer (NICER) mission. In this Letter we study the implications of the mass–radius inference reported for this source by Riley et al. for the dense matter equation of state (EoS), in the context of prior information from nuclear physics at low densities. Using a Bayesian framework we infer central densities and EoS properties for two choices of high-density extensions: a piecewise-polytropic model and a model based on assumptions of the speed of sound in dense matter. Around nuclear saturation density these extensions are matched to an EoS uncertainty band obtained from calculations based on chiral effective field theory interactions, which provide a realistic description of atomic nuclei as well as empirical nuclear matter properties within uncertainties. We further constrain EoS expectations with input from the current highest measured pulsar mass; together, these constraints offer a narrow Bayesian prior informed by theory as well as laboratory and astrophysical measurements. The NICER mass–radius likelihood function derived by Riley et al. using pulse-profile modeling is consistent with the highest-density region of this prior. The present relatively large uncertainties on mass and radius for PSR J0030+0451 offer, however, only a weak posterior information gain over the prior. We explore the sensitivity to the inferred geometry of the heated regions that give rise to the pulsed emission, and find a small increase in posterior gain for an alternative (but less preferred) model. Lastly, we investigate the hypothetical scenario of increasing the NICER exposure time for PSR J0030+0451.

203 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide sets of one-body potentials for collisions between two nuclei which have $N/Z$ significantly different from unity, which are both isospin and momentum dependent.
Abstract: For transport model simulations of collisions between two nuclei which have $N/Z$ significantly different from unity one needs a one-body potential which is both isospin and momentum dependent. This work provides sets of such potentials.

203 citations


Network Information
Related Topics (5)
Quark
43.3K papers, 951K citations
93% related
Quantum chromodynamics
47.1K papers, 1.2M citations
92% related
Neutrino
45.9K papers, 1M citations
91% related
Supersymmetry
29.7K papers, 1.1M citations
89% related
Gauge theory
38.7K papers, 1.2M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023132
2022299
2021252
2020268
2019256
2018240