scispace - formally typeset
Search or ask a question
Topic

Nuclear matter

About: Nuclear matter is a research topic. Over the lifetime, 10180 publications have been published within this topic receiving 248261 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, an analysis of nuclear properties based on a relativistic energy functional containing Dirac nucleons and classical scalar and vector meson fields is discussed, and a truncation scheme is developed for the energy functional, which is based on an expansion in powers of the meson field and their gradients.

162 citations

Journal ArticleDOI
TL;DR: The structure of neutron stars constructed from the unified equations of states with crossover is described, and the parameters of effective quark models are constrained by neutron star mass and radii measurements, in particular favoring large repulsive density-density and attractive diquark pairing interactions.
Abstract: We review the equation of state of matter in neutron stars from the solid crust through the liquid nuclear matter interior to the quark regime at higher densities. We focus in detail on the question of how quark matter appears in neutron stars, and how it affects the equation of state. After discussing the crust and liquid nuclear matter in the core we briefly review aspects of microscopic quark physics relevant to neutron stars, and quark models of dense matter based on the Nambu--Jona-Lasinio framework, in which gluonic processes are replaced by effective quark interactions. We turn then to describing equations of state useful for interpretation of both electromagnetic and gravitational observations, reviewing the emerging picture of hadron-quark continuity in which hadronic matter turns relatively smoothly, with at most only a weak first order transition, into quark matter with increasing density. We review construction of unified equations of state that interpolate between the reasonably well understood nuclear matter regime at low densities and the quark matter regime at higher densities. The utility of such interpolations is driven by the present inability to calculate the dense matter equation of state in QCD from first principles. As we review, the parameters of effective quark models -- which have direct relevance to the more general structure of the QCD phase diagram of dense and hot matter -- are constrained by neutron star mass and radii measurements, in particular favoring large repulsive density-density and attractive diquark pairing interactions. We describe the structure of neutron stars constructed from the unified equations of states with crossover. Lastly we present the current equations of state -- called "QHC18" for quark-hadron crossover -- in a parametrized form practical for neutron star modeling.

162 citations

Journal ArticleDOI
TL;DR: In this article, a generalized double-folding model for elastic and inelastic nucleus-nucleus scattering is presented, which is designed to accommodate effective nucleon−nucleon (NN) interactions that depend upon the density of nuclear matter in which the two nucleons are immersed.

162 citations

Journal ArticleDOI
TL;DR: In this paper, the authors show that the maximum mass (M max) of neutron stars with quark matter cores can be larger than those without quark-matter cores, in contrast to the conventional softening of the equation of state due to exotic components at high density.
Abstract: Using the idea of smooth crossover from hadronic matter with hyperons to quark matter with strangeness, we show that the maximum mass (M max) of neutron stars with quark matter cores can be larger than those without quark matter cores. This is in contrast to the conventional softening of the equation of state due to exotic components at high density. The essential conditions for reaching our conclusion are that (1) the crossover takes place at relatively low densities, around three times the normal nuclear density and (2) the quark matter is strongly interacting in the crossover region. From these, the pressure of the system can be greater than that of purely hadronic matter at a given baryon density in the crossover density region and leads to M max greater than 2 solar mass. This conclusion is insensitive to the different choice of the hadronic equation of state with hyperons. We remark upon several implications of this result to the nuclear incompressibility, the hyperon mixing, and the neutrino cooling.

162 citations

Journal ArticleDOI
TL;DR: In this article, a comprehensive analysis of the gravitational-wave signal emitted during the inspiral, merger and post-merger of 56 neutron-star binaries is presented, which spans across six different nuclear-physics equations of state and ten masses, allowing the authors to sharpen a number of results recently obtained on the spectral properties of the GW signal.
Abstract: A number of works have shown that important information on the equation of state of matter at nuclear density can be extracted from the gravitational waves emitted by merging neutron-star binaries. We present a comprehensive analysis of the gravitational-wave signal emitted during the inspiral, merger and post-merger of 56 neutron-star binaries. This sample of binaries, arguably the largest studied to date with realistic equations of state, spans across six different nuclear-physics equations of state and ten masses, allowing us to sharpen a number of results recently obtained on the spectral properties of the gravitational-wave signal. Overall we find that: (i) for binaries with masses differing no more than $20\%$, the frequency at gravitational-wave amplitude's maximum is related quasi-universally with the tidal deformability of the two stars; (ii) the spectral properties vary during the post-merger phase, with a transient phase lasting a few millisecond after the merger and followed by a quasi-stationary phase; (iii) when distinguishing the spectral peaks between these two phases, a number of ambiguities in the identification of the peaks disappear, leaving a simple and robust picture; (iv) using properly identified frequencies, quasi-universal relations are found between the spectral features and the properties of the neutron stars; (v) for the most salient peaks analytic fitting functions can be obtained in terms of the stellar tidal deformability or compactness. Altogether, these results support the idea that the equation of state of nuclear matter can be constrained tightly when a signal in gravitational waves from binary neutron stars is detected.

162 citations


Network Information
Related Topics (5)
Quark
43.3K papers, 951K citations
93% related
Quantum chromodynamics
47.1K papers, 1.2M citations
92% related
Neutrino
45.9K papers, 1M citations
91% related
Supersymmetry
29.7K papers, 1.1M citations
89% related
Gauge theory
38.7K papers, 1.2M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023132
2022299
2021252
2020268
2019256
2018240