scispace - formally typeset
Search or ask a question
Topic

Nuclear matter

About: Nuclear matter is a research topic. Over the lifetime, 10180 publications have been published within this topic receiving 248261 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The sensitivity of the collective flow pattern of quark-gluon plasmas to uncertainties in the nuclear matter equation of state is explored in this paper, where the authors focus on the effect of a possible finite width of the transition region.
Abstract: The hydrodynamic expansion of quark-gluon plasmas with spherical and longitudinally boost-invariant geometries is studied as a function of the initial energy density. The sensitivity of the collective flow pattern to uncertainties in the nuclear matter equation of state is explored. We concentrate on the effect of a possible finite width, $\Delta T \sim 0.1 T_c$, of the transition region between quark-gluon plasma and hadronic phase. Although slow deflagration solutions that act to stall the expansion do not exist for $\Delta T > 0.08 T_c$, we find, nevertheless, that the equation of state remains sufficiently soft in the transition region to delay the propagation of ordinary rarefaction waves for a considerable time. We compute the dependence of the pion-interferometry correlation function on $\Delta T$, since this is the most promising observable for time-delayed expansion. The signature of time delay, proposed by Pratt and Bertsch, is an enhancement of the ratio of the inverse width of the pion correlation function in out-direction to that in side-direction. One of our main results is that this generic signature of quark-gluon plasma formation is rather robust to the uncertainties in the width of the transition region. Furthermore, for longitudinal boost-invariant geometries, the signal is likely to be maximized around RHIC energies, $\sqrt{s} \sim 200$ AGeV.

155 citations

Journal ArticleDOI
TL;DR: In this article, a quark-hadron hybrid equation of state was constructed for core-collapse supernova simulations, based on general relativistic radiation hydrodynamics and three-flavor Boltzmann neutrino transport in spherical symmetry.
Abstract: We explore explosions of massive stars, which are triggered via the quark-hadron phase transition during the early post-bounce phase of core-collapse supernovae. We construct a quark equation of state, based on the bag model for strange quark matter. The transition between the hadronic and the quark phases is constructed applying Gibbs conditions. The resulting quark-hadron hybrid equations of state are used in core-collapse supernova simulations, based on general relativistic radiation hydrodynamics and three-flavor Boltzmann neutrino transport in spherical symmetry. The formation of a mixed phase reduces the adiabatic index, which induces the gravitational collapse of the central protoneutron star (PNS). The collapse halts in the pure quark phase, where the adiabatic index increases. A strong accretion shock forms, which propagates toward the PNS surface. Due to the density decrease of several orders of magnitude, the accretion shock turns into a dynamic shock with matter outflow. This moment defines the onset of the explosion in supernova models that allow for a quark-hadron phase transition, where otherwise no explosions could be obtained. The shock propagation across the neutrinospheres releases a burst of neutrinos. This serves as a strong observable identification for the structural reconfiguration of the stellar core. The ejected matter expands on a short timescale and remains neutron-rich. These conditions might be suitable for the production of heavy elements via the r-process. The neutron-rich material is followed by proton-rich neutrino-driven ejecta in the later cooling phase of the PNS where the νp-process might occur.

155 citations

Journal ArticleDOI
TL;DR: In this article, a theory of condensation was proposed to explain nuclear phase transitions with a critical exponent of 1.7 and a critical temperature of 12.5 MeV, respectively.
Abstract: At certain combinations of temperature and density, nuclear matter may exist as a liquid-gas mixture exhibiting phase instabilities, a characteristic signature of which may be found in the emission of intermediate-mass fragments in nuclear collisions. The present analysis of fragment distributions from proton- and heavy-ion-induced reactions, in the framework of a theory of condensation, is suggestive of the occurrence of such phase transitions with a critical exponent $k\ensuremath{\sim}1.7$ and a critical temperature ${T}_{c}\ensuremath{\sim}12$ MeV.

154 citations

Journal ArticleDOI
TL;DR: In this paper, the relativistic mean field plus random phase and quasiparticle random phase approximation calculations, based on effective Lagrangians with density-dependent meson-nucleon vertex functions, are employed in a microscopic analysis of the nuclear matter compressibility and symmetry energy.
Abstract: The relativistic mean-field plus random phase and quasiparticle random phase approximation calculations, based on effective Lagrangians with density-dependent meson-nucleon vertex functions, are employed in a microscopic analysis of the nuclear matter compressibility and symmetry energy. We compute the isoscalar monopole response of 90Zr, 116Sn, 144Sm, the isoscalar monopole and isovector dipoles response of 208Pb, and also the differences between the neutron and proton radii for 208Pb and several Sn isotopes. The comparison of the calculated excitation energies with the experimental data on the giant monopole resonances restricts the nuclear matter compression modulus of structure models based on the relativistic mean-field approximation to Knm 250-270 MeV. The isovector giant dipole resonance in 208Pb and the available data on differences between the neutron and proton radii limit the range of the nuclear matter symmetry energy at saturation (volume asymmetry) of these effective interactions to 32 MeV < a4 < 36 MeV.

154 citations

Journal ArticleDOI
TL;DR: The model consists of Skyrme-type interactions in four-, six-, and eight-fermion point couplings in a manifestly nonrenormalizable Lagrangian, which also contains derivative terms to simulate the finite ranges of the mesonic interactions.
Abstract: We present initial results in the calculation of nuclear ground state properties in a relativistic Hartree approximation. Our model consists of Skyrme-type interactions in four-, six-, and eight-fermion point couplings in a manifestly nonrenormalizable Lagrangian, which also contains derivative terms to simulate the finite ranges of the mesonic interactions. A self-consistent procedure has been developed to solve the model equations for several nuclei simultaneously by use of a generalized nonlinear least-squares adjustment algorithm. With this procedure we determine the nine coupling constants of our model so as to reproduce measured ground state binding energies, rms charge radii, and spin-orbit splittings of selected closed major shell and closed subshell nuclei in nondeformed regions. The coupling constants obtained in this way predict these same observables for a much larger set of closed shell spherical nuclei to good accuracy and also predict these quantities for similar nuclei far outside the valley of beta stability. Finally, they yield properties of saturated nuclear matter in agreement with recent relativistic mean meson field approaches.

154 citations


Network Information
Related Topics (5)
Quark
43.3K papers, 951K citations
93% related
Quantum chromodynamics
47.1K papers, 1.2M citations
92% related
Neutrino
45.9K papers, 1M citations
91% related
Supersymmetry
29.7K papers, 1.1M citations
89% related
Gauge theory
38.7K papers, 1.2M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023132
2022299
2021252
2020268
2019256
2018240