scispace - formally typeset
Search or ask a question
Topic

Nuclear quadrupole resonance

About: Nuclear quadrupole resonance is a research topic. Over the lifetime, 3531 publications have been published within this topic receiving 38801 citations. The topic is also known as: Nuclear quadrupole resonance spectroscopy & NQR.


Papers
More filters
Journal ArticleDOI
TL;DR: From quadrupole-perturbed NMR spectra at different magnetic fields, and from zero-field NQR spectra, a wide distribution of local electric-field gradient (EFG) tensor components and principal-axis-system orientations was found at the Al site, and a model EFG calculation based on a 1/1 Al-Cu-Fe approximant successfully explained the observed NQr spectra.
Abstract: [sup 27]Al and [sup 63,65]Cu NMR is reported for powdered stable Al-Cu-Fe and Al-Cu-Ru icosahedral quasicrystals and crystalline approximants, and for an Al-Pd-Mn single-grain quasicrystal. [sup 27]Al NQR spectra at 4.2 K were observed in Al-Cu-Fe and Al-Cu-Ru samples. From quadrupole-perturbed NMR spectra at different magnetic fields, and from zero-field NQR spectra, a wide distribution of local electric-field gradient (EFG) tensor components and principal-axis-system orientations was found at the Al site. A model EFG calculation based on a 1/1 Al-Cu-Fe approximant successfully explained the observed NQR spectra. The average local gradient is largely determined by the [ital p]-electron wave function at the Al site, while the width of the distribution is due to EFG lattice contribution. Comparison of [sup 63]Cu and [sup 27]Al NMR shows the EFG distribution at the two sites is similar, but the electronic contribution to the EFG is considerably smaller at the Cu site, in agreement with a more [ital s]-type wave function of the conduction electrons. Overall spread of EFG values is well reproduced by calculation based on the approximant. However, the experimental spectra indicate a much larger number of nonequivalent sites when compared with the simulated NQR spectra based on the 1/1 approximant. Themore » short-range, local chemical order is well represented by the approximant, but differences in coordination must be included at intermediate range in the quasicrystal. Measured [sup 27]Al Knight shift, magnetic susceptibility, and nuclear spin-lattice relaxation time as a function of temperature indicate reduced density of states at the Fermi level by a factor of 7 or 8 from the value in Al metal, consistent with the notion of a pseudogap for these quasicrystals. No differences in measured parameters were detected as a function of composition of the quasicrystalline alloys.« less

20 citations

Journal ArticleDOI
TL;DR: In this article, a magnetic phase diagram in the field-temperature plane for the heavy-fermion superconductor CeCu2Si2 with Tc=072 K was presented.
Abstract: Magnetic correlation in the heavy-fermion superconductor CeCu2Si2 has been investigated by Cu nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) For CeCu202Si2 with Tc=072 K, a magnetic transition has been found at around 08 K in applied fields up to 35 T, which presumably also exists in zero magnetic field Below the transition temperature, Cu NMR loses intensity suddenly without any broadening and shift of the spectrum, and the spin-echo decay rate, 1/T2, at H=133 kOe, increases with decreasing temperature, which is different from the behaviour expected in a static magnetically ordered state The magnetic transition just above Tc is quite unusual in the sense that the ordered state is not in a completely static regime, but possesses some dynamic aspect The unusual magnetic state is considered to coexist with superconductivity below Tc The authors present a magnetic phase diagram in the field-temperature plane for CeCu202Si2

20 citations

Journal ArticleDOI
TL;DR: This review covers different aspects of the use of NQR spectroscopy for drug development and analysis and illustrates the power and versatility of this method in the determination of impurities, polymorphic forms, the drug’s structure and conformation, characterization of the interactions between the drug and ligands, search for analogs and the drug's thermal stability.
Abstract: In this review, fundamentals of nuclear quadrupole resonance (NQR) spectroscopy are briefly outlined. Examples of its applications in drug development are discussed to demonstrate that the NQR method is a sophisticated, non-destructive and valuable analytical technique for studying pharmaceuticals, providing effective assistance at the two main steps of drug development: the physical and chemical characterization of the active pharmaceutical ingredients (API) at the analytical step and API development. This review covers different aspects of the use of NQR spectroscopy for drug development and analysis and illustrates the power and versatility of this method in the determination of impurities, polymorphic forms, the drug's structure and conformation, characterization of the interactions between the drug and ligands, search for analogs (second- or third-generation drugs) and the drug's thermal stability. Lastly, NQR advantages and restrictions in the aspect of application in drug development studies are summarized.

20 citations


Network Information
Related Topics (5)
Ab initio
57.3K papers, 1.6M citations
87% related
Raman spectroscopy
122.6K papers, 2.8M citations
84% related
Excited state
102.2K papers, 2.2M citations
84% related
Magnetization
107.8K papers, 1.9M citations
84% related
Band gap
86.8K papers, 2.2M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202320
202237
202116
202036
201928
201829