scispace - formally typeset
Search or ask a question
Topic

Nucleate boiling

About: Nucleate boiling is a research topic. Over the lifetime, 12078 publications have been published within this topic receiving 254627 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a simple correlation was developed earlier by Kandlikar (1983) for predicting saturated flow boiling heat transfer coefficients inside horizontal and vertical tubes, which was further refined by expanding the data base to 5,246 data points from 24 experimental investigations with ten fluids.
Abstract: A simple correlation was developed earlier by Kandlikar (1983) for predicting saturated flow boiling heat transfer coefficients inside horizontal and vertical tubes. It was based on a model utilizing the contributions due to nucleate boiling and convective mechanisms. It incorporated a fluid-dependent parameter F{sub fl} in the nucleate boiling term. The predictive ability of the correlation for different refrigerants was confirmed by comparing it with the recent data on R-113 by Jensen and Bensler (1986) and Khanpara et al. (1986). In the present work, the earlier correlation is further refined by expanding the data base to 5,246 data points from 24 experimental investigations with ten fluids. The proposed correlation gives a mean deviation of 15.9 percent with water data, and 18.8 percent with all refrigerant data, and it also predicts the correct h{sub TP} versus x trend as verified with water and R-113 data yielded the lowest mean deviations among correlations tested. The proposed correlation can be extended to other fluids by evaluating the fluid-dependent parameter F{sub fl} for that fluid from its flow boiling or pool boiling data.

1,003 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the role of transient conduction in pool boiling and concluded that the change of surface characteristics during boiling due to trapped particles on the surface is the cause for the shift of the boiling characteristics in the negative direction.

954 citations

ReportDOI
01 Jun 1959
TL;DR: In this paper, the critical heat flux and the minimum heat flux are derived from these hydrodynamic limits, and results of investigations of nucleate boilin g are discussed and the theory of bubble growth is extended to include the effect of nonuniform temperature fields.
Abstract: A study concerned with the determination of the limiting hydrodynamic conditions which characterize nucleate and transitional boiling was conducted. The critical heat flux and the minimum heat flux are derived from these hydrodynamic limits. Results of investigations of nucleate boilin g are discussed and the theory of bubble growth is extended to include the effect of non-uniform temperature fields. An equation is derived for the product bubble diameter times frequency of bubble emission, and data showing that the diameter of nucleating cavities can he related to the heat flux density and superheat difference are presented. (J.R.D.)

953 citations


Network Information
Related Topics (5)
Heat transfer
181.7K papers, 2.9M citations
94% related
Heat exchanger
184.2K papers, 1M citations
90% related
Reynolds number
68.4K papers, 1.6M citations
86% related
Laminar flow
56K papers, 1.2M citations
84% related
Thermal conductivity
72.4K papers, 1.4M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023267
2022452
2021207
2020181
2019216
2018243