scispace - formally typeset
Search or ask a question

Showing papers on "Nucleolar chromatin published in 2004"


Journal ArticleDOI
TL;DR: This work has mapped the protein domains that mediate the interaction between TTF-I and TIP5, a subunit of the nucleolar chromatin remodeling complex, NoRC, that facilitates DNA binding of TTF -I and leads to the recruitment of NoRC to the rDNA promoter.
Abstract: The transcription termination factor (TTF)-I is a multifunctional nucleolar protein that terminates ribosomal gene transcription, mediates replication fork arrest and regulates RNA polymerase I transcription on chromatin. TTF-I plays a dual role in rDNA regulation, being involved in both activation and silencing of rDNA transcription. The N-terminal part of TTF-I contains a negative regulatory domain (NRD) that inhibits DNA binding. Here we show that interactions between the NRD and the C-terminal part of TTF-I mask the DNA-binding domain of TTF-I. However, interaction with TIP5, a subunit of the nucleolar chromatin remodeling complex, NoRC, recovers DNA-binding activity. We have mapped the protein domains that mediate the interaction between TTF-I and TIP5. The association of TIP5 with the NRD facilitates DNA binding of TTF-I and leads to the recruitment of NoRC to the rDNA promoter. Thus, TTF-I and NoRC act in concert to silence rDNA transcription.

77 citations


Journal ArticleDOI
TL;DR: It is shown that nucleolar segregation is spatially separated and temporally delayed from the rest of the genome during mid-anaphase and coincides with the FEAR release of Cdc14p, demonstrating that one function of the Fear network is to promote segregation of repetitive nucleolar chromatin during mid the anaphase.
Abstract: In order to transmit a full genetic complement cells must ensure that all chromosomes are accurately split and distributed during anaphase. Chromosome XII in S. cerevisiae contains the site of nucleolar assembly, a 1-2Mb array of rDNA genes named RDN1. Cdc14p is a conserved phosphatase, essential for anaphase progression and mitotic exit, which is kept inactive at the nucleolus until mitosis. In early anaphase, the FEAR network (Cdc Fourteen Early Anaphase Release) promotes the transient and partial release of Cdc14p from the nucleolus. The putative role of Cdc14p released by the FEAR network is thought to be the stimulation of full Cdc14p release by activation of the GTPase-driven signaling cascade (the Mitotic Exit Network or MEN) that ensures mitotic exit. Here, we show that nucleolar segregation is spatially separated and temporally delayed from the rest of the genome. Nucleolar segregation occurs during mid-anaphase and coincides with the FEAR release of Cdc14p. Inactivation of FEAR delays nucleolar segregation until late anaphase, demonstrating that one function of the FEAR network is to promote segregation of repetitive nucleolar chromatin during mid-anaphase.

71 citations