scispace - formally typeset
Search or ask a question

Showing papers on "Nucleolus published in 2002"


Journal ArticleDOI
TL;DR: This extensive proteomic analysis of human nucleoli shows that nucleoli have a surprisingly large protein complexity and supports the view that the nucleolus may perform additional functions beyond its known role in ribosome subunit biogenesis.

989 citations


Journal ArticleDOI
TL;DR: It is shown that loci at nucleoli or the nuclear periphery are significantly less mobile than other, more nucleoplasmic loci, suggesting a role for the nucleolus and nuclear periphery in maintaining the three-dimensional organization of chromatin in the human nucleus.

570 citations


Journal ArticleDOI
TL;DR: It is shown that PSP1 accumulates in a new nucleoplasmic compartment, termed paraspeckles, that also contains at least two other protein components: PSP2 and p54/nrb.

488 citations


Journal ArticleDOI
TL;DR: A proteomic analysis was carried out to draw up a list of proteins present within nucleoli of HeLa cells, allowing the identification of 213 different nucleolar proteins, which reinforces the plurifunctional nature of nucleoli and provides convincing evidence that nucleoli may play a central role in the control of gene expression.
Abstract: The notion of a "plurifunctional" nucleolus is now well established. However, molecular mechanisms underlying the biological processes occurring within this nuclear domain remain only partially understood. As a first step in elucidating these mechanisms we have carried out a proteomic analysis to draw up a list of proteins present within nucleoli of HeLa cells. This analysis allowed the identification of 213 different nucleolar proteins. This catalog complements that of the 271 proteins obtained recently by others, giving a total of approximately 350 different nucleolar proteins. Functional classification of these proteins allowed outlining several biological processes taking place within nucleoli. Bioinformatic analyses permitted the assignment of hypothetical functions for 43 proteins for which no functional information is available. Notably, a role in ribosome biogenesis was proposed for 31 proteins. More generally, this functional classification reinforces the plurifunctional nature of nucleoli and provides convincing evidence that nucleoli may play a central role in the control of gene expression. Finally, this analysis supports the recent demonstration of a coupling of transcription and translation in higher eukaryotes.

466 citations


Journal ArticleDOI
TL;DR: Some newly discovered brain-specific small nucleolar RNAs of unknown function are encoded in introns of tandemly repeated units, expression of which is paternally imprinted.

383 citations


Journal ArticleDOI
TL;DR: An initial biochemical map of 60S ribosomal subunit formation on its path from the nucleolus to the cytoplasm is provided.
Abstract: 60S ribosomes undergo initial assembly in the nucleolus before export to the cytoplasm and recent analyses have identified several nucleolar pre-60S particles. To unravel the steps in the pathway of ribosome formation, we have purified the pre-60S ribosomes associated with proteins predicted to act at different stages as the pre-ribosomes transit from the nucleolus through the nucleoplasm and are then exported to the cytoplasm for final maturation. About 50 non-ribosomal proteins are associated with the early nucleolar pre-60S ribosomes. During subsequent maturation and transport to the nucleoplasm, many of these factors are removed, while others remain attached and additional factors transiently associate. When the 60S precursor particles are close to exit from the nucleus they associate with at least two export factors, Nmd3 and Mtr2. As the 60S pre-ribosome reaches the cytoplasm, almost all of the factors are dissociated. These data provide an initial biochemical map of 60S ribosomal subunit formation on its path from the nucleolus to the cytoplasm.

368 citations


Journal ArticleDOI
TL;DR: It is shown that transformation and DNA damage have opposite effects on the cellular regulation of active telomerase, affecting the enzyme's access to both telomeric and nontelomeric substrates.
Abstract: The telomerase ribonucleoprotein complex caps chromosome ends by adding telomeric repeats. Here we show that catalytically active human telomerase has a regulated intranuclear localization that is dependent on the cell-cycle stage, transformation and DNA damage. In primary cell lines, low expression of a fusion protein of green fluorescent protein and telomerase reverse transcriptase (GFP-hTERT) increases telomerase activity and stabilizes the maintenance of telomere length. Confocal microscopy shows that the release of telomerase to the nucleoplasm from sequestration at nucleolar sites is enhanced at the expected time of telomere replication. By contrast, in tumour and transformed cells, there is an almost complete dissociation of telomerase from nucleoli at all stages of the cell cycle. Transfection of the simian virus 40 genome into a primary cell line is sufficient to mobilize telomerase from nucleoli to the nucleoplasm. Conversely, ionizing radiation induces the reassociation of telomerase with nucleoli in both primary and transformed cells. These findings show that transformation and DNA damage have opposite effects on the cellular regulation of active telomerase, affecting the enzyme's access to both telomeric and nontelomeric substrates.

265 citations


Journal ArticleDOI
TL;DR: It is shown that yeast Tgs1p, an evolutionarily conserved protein carrying a signature of S-AdoMet methyltransferase, is essential for hypermethylation of the m(7)G caps of both snRNAs and snoRNAs.

226 citations


Journal ArticleDOI
TL;DR: Spatial organization of U3 maturation appears to be conserved across evolution, and involves specialized and related nuclear compartments, the nucleolus/nucleolar body in yeast and Cajal bodies in higher eukaryotes.
Abstract: Nucleolar localization of vertebrate box C/D snoRNA involves transit through Cajal bodies, but the significance of this event is unknown. To define better the function of this compartment, we analyzed here the maturation pathway of mammalian U3. We show that 3'-extended U3 precursors possess a mono-methylated cap, and are not associated with fibrillarin and hNop58. Importantly, these precursors are detected at both their transcription sites and in Cajal bodies. In addition, mature U3, the core box C/D proteins and the human homolog of the methyltransferase responsible for U3 cap tri-methylation, hTgs1, are all present in Cajal bodies. In yeast, U3 follows a similar maturation pathway, and equivalent 3'-extended precursors are enriched in the nucleolus and in the nucleolar body, a nucleolar domain that concentrates Tgs1p under certain growth conditions. Thus, spatial organization of U3 maturation appears to be conserved across evolution, and involves specialized and related nuclear compartments, the nucleolus/nucleolar body in yeast and Cajal bodies in higher eukaryotes. These are likely places for snoRNP assembly, 3' end maturation and cap modification.

221 citations


Book ChapterDOI
TL;DR: The nonconventional functions of nucleolus include roles in viral infections, nuclear export, sequestration of regulatory molecules, modification of small RNAs, RNP assembly, and control of aging, although some of these functions are not well established.
Abstract: As the most prominent of subnuclear structures, the nucleolus has a well-established role in ribosomal subunit assembly. Additional nucleolar functions, not related to ribosome biogenesis, have been discovered within the last decade. Built around multiple copies of the genes for preribosomal RNA (rDNA), nucleolar structure is largely dependent on the process of ribosome assembly. The nucleolus is disassembled during mitosis at which time preribosomal RNA transcription and processing are suppressed; it is reassembled at the end of mitosis in part from components preserved from the previous cell cycle. Expression of preribosomal RNA (pre-rRNA) is regulated by the silencing of individual rDNA genes via alterations in chromatin structure or by controlling RNA polymerase I initiation complex formation. Preribosomal RNA processing and posttranscriptional modifications are guided by a multitude of small nucleolar RNAs. Nearly completed ribosomal subunits are exported to the cytoplasm by an established nuclear export system with the aid of specialized adapter molecules. Some preribosomal and nucleolar components are transiently localized in Cajal bodies, presumably for modification or assembly. The nonconventional functions of nucleolus include roles in viral infections, nuclear export, sequestration of regulatory molecules, modification of small RNAs, RNP assembly, and control of aging, although some of these functions are not well established. Additional progress in defining the mechanisms of each step in ribosome biogenesis as well as clarification of the precise role of the nucleolus in nonconventional activities is expected in the next decade.

211 citations


Journal ArticleDOI
TL;DR: Evidence suggests that viruses may target the nucleolus and its components to favour viral transcription, translation and perhaps alter the cell cycle in order to promote virus replication.
Abstract: A number of viruses and viral proteins interact with a dynamic sub-nuclear structure called the nucleolus. The nucleolus is present during interphase in mammalian cells and is the site of ribosome biogenesis, and has been implicated in controlling regulatory processes such as the cell cycle. Viruses interact with the nucleolus and its antigens; viral proteins co-localise with factors such as nucleolin, B23 and fibrillarin, and can cause their redistribution during infection. Viruses can use these components as part of their replication process, and also use the nucleolus as a site of replication itself. Many of these properties are not restricted to any particular type of virus or replication mechanism, and examples of these processes can be found in DNA, RNA and retroviruses. Evidence suggests that viruses may target the nucleolus and its components to favour viral transcription, translation and perhaps alter the cell cycle in order to promote virus replication. Autoimmunity to nucleolin and fibrillarin have been associated with a number of diseases, and by targeting the nucleolus and displacing nucleolar antigens, virus infection might play a role in the initiation of these conditions.

Journal ArticleDOI
TL;DR: Observations suggest that topo II is not an immobile, structural component of the chromosomal scaffold or the interphase karyoskeleton, but rather a dynamic interaction partner of such structures.
Abstract: DNA topoisomerase (topo) II catalyses topological genomic changes essential for many DNA metabolic processes. It is also regarded as a structural component of the nuclear matrix in interphase and the mitotic chromosome scaffold. Mammals have two isoforms (α and β) with similar properties in vitro. Here, we investigated their properties in living and proliferating cells, stably expressing biofluorescent chimera of the human isozymes. Topo IIα and IIβ behaved similarly in interphase but differently in mitosis, where only topo IIα was chromosome associated to a major part. During interphase, both isozymes joined in nucleolar reassembly and accumulated in nucleoli, which seemed not to involve catalytic DNA turnover because treatment with teniposide (stabilizing covalent catalytic DNA intermediates of topo II) relocated the bulk of the enzymes from the nucleoli to nucleoplasmic granules. Photobleaching revealed that the entire complement of both isozymes was completely mobile and free to exchange between nuclear subcompartments in interphase. In chromosomes, topo IIα was also completely mobile and had a uniform distribution. However, hypotonic cell lysis triggered an axial pattern. These observations suggest that topo II is not an immobile, structural component of the chromosomal scaffold or the interphase karyoskeleton, but rather a dynamic interaction partner of such structures.

Journal ArticleDOI
TL;DR: Nucleolar localization of B23.1 is mediated by its ability to associate with RNA, which is stringently modulated by its phosphorylation and subtype association.
Abstract: Nucleophosmin/B23 is a nucleolar phosphoprotein. It has been shown that B23 binds to nucleic acids, digests RNA, and is localized in nucleolar granular components from which preribosomal particles are transported to cytoplasm. The intracellular localization of B23 is significantly changed during the cell cycle. Here, we have examined the cellular localization of B23 proteins and the effect of mitotic phosphorylation of B23.1 on its RNA binding activity. Two splicing variants of B23 proteins, termed B23.1 and B23.2, were complexed both in vivo and in vitro. The RNA binding activity of B23.1 was impaired by hetero-oligomer formation with B23.2. Both subtypes of B23 proteins were phosphorylated during mitosis by cyclin B/cdc2. The RNA binding activity of B23.1 was repressed through cyclin B/cdc2-mediated phosphorylation at specific sites in B23. Thus, the RNA binding activity of B23.1 is stringently modulated by its phosphorylation and subtype association. Interphase B23.1 was mainly localized in nucleoli, whereas B23.2 and mitotic B23.1, those of which were incapable of binding to RNA, were dispersed throughout the nucleoplasm and cytoplasm, respectively. These results suggest that nucleolar localization of B23.1 is mediated by its ability to associate with RNA.

Journal ArticleDOI
TL;DR: It is proposed that the mechanisms governing both formation and maintenance of functional nucleoli involve CDK activities and couple the cell cycle to ribosome biogenesis.
Abstract: In higher eukaryotic cells, the nucleolus is a nuclear compartment assembled at the beginning of interphase, maintained during interphase, and disorganized during mitosis. Even if its structural organization appears to be undissociable from its function in ribosome biogenesis, the mechanisms that govern the formation and maintenance of the nucleolus are not elucidated. To determine if cell cycle regulators are implicated, we investigated the putative role of the cyclin-dependent kinases (CDKs) on ribosome biogenesis and nucleolar organization. Inhibition of CDK1–cyclin B during mitosis leads to resumption of rDNA transcription, but is not sufficient to induce proper processing of the pre-rRNA and total relocalization of the processing machinery into rDNA transcription sites. Similarly, at the exit from mitosis, both translocation of the late processing machinery and pre-rRNA processing are impaired in a reversible manner by CDK inhibitors. Therefore, CDK activity seems indispensable for the building of functional nucleoli. Furthermore, inhibition of CDKs in interphasic cells also hampered proper pre-rRNA processing and induced a dramatic disorganization of the nucleolus. Thus, we propose that the mechanisms governing both formation and maintenance of functional nucleoli involve CDK activities and couple the cell cycle to ribosome biogenesis.

Journal ArticleDOI
TL;DR: Stereological analysis of the clustered transcription signal suggests that nascent “Christmas trees” of rRNA associated with individual rDNA genes, sampled on the surface of thin sections, may be contorted in space and exhibit a DNA compaction ratio on the order of 4–5.5.
Abstract: T he organization of transcriptionally active ribosomal genes in animal cell nucleoli is investigated in this study in order to address the long-standing controversy with regard to the intranucleolar localization of these genes. Detailed analyses of HeLa cell nucleoli include direct localization of ribosomal genes by in situ hybridization and their indirect localization via nascent ribosomal transcript mappings. On the light microscopy (LM) level, ribosomal genes map in 10–40 fluorescence foci per nucleus, and transcription activity is associated with most foci. We demonstrate that each nucleolar focus observed by LM corresponds, on the EM level, to an individual fibrillar center (FC) and surrounding dense fibrillar components (DFCs). The EM data identify the DFC as the nucleolar subcompartment in which rRNA synthesis takes place, consistent with detection of rDNA within the DFC. The highly sensitive method for mapping nascent transcripts in permeabilized cells on ultrastructural level provides intense and unambiguous clustered immunogold signal over the DFC, whereas very little to no label is detected over the FC. This signal is strongly indicative of nascent “Christmas trees” of rRNA associated with individual rDNA genes, sampled on the surface of thin sections. Stereological analysis of the clustered transcription signal further suggests that these Christmas trees may be contorted in space and exhibit a DNA compaction ratio on the order of 4–5.5.

Journal ArticleDOI
TL;DR: Fibrillarin is found to be reorganized in primary cells infected with the avian coronavirus infectious bronchitis virus and in continuous cell lines that express either IBV or mouse hepatitis virus N protein, providing a possible explanation as to how coronav virus N proteins localize to the nucleolus.
Abstract: Coronavirus nucleoproteins (N proteins) localize to the cytoplasm and the nucleolus, a subnuclear structure, in both virus-infected primary cells and in cells transfected with plasmids that express N protein. The nucleolus is the site of ribosome biogenesis and sequesters cell cycle regulatory complexes. Two of the major components of the nucleolus are fibrillarin and nucleolin. These proteins are involved in nucleolar assembly and ribosome biogenesis and act as chaperones for the import of proteins into the nucleolus. We have found that fibrillarin is reorganized in primary cells infected with the avian coronavirus infectious bronchitis virus (IBV) and in continuous cell lines that express either IBV or mouse hepatitis virus N protein. Both N protein and a fibrillarin-green fluorescent protein fusion protein colocalized to the perinuclear region and the nucleolus. Pull-down assays demonstrated that IBV N protein interacted with nucleolin and therefore provided a possible explanation as to how coronavirus N proteins localize to the nucleolus. Nucleoli, and proteins that localize to the nucleolus, have been implicated in cell growth-cell cycle regulation. Comparison of cells expressing IBV N protein with controls indicated that cells expressing N protein had delayed cellular growth. This result could not to be attributed to apoptosis. Morphological analysis of these cells indicated that cytokinesis was disrupted, an observation subsequently found in primary cells infected with IBV. Coronaviruses might therefore delay the cell cycle in interphase, where maximum translation of viral mRNAs can occur.

Journal ArticleDOI
TL;DR: It is reported that hTERT does indeed localize to the nucleolus, and the domain responsible for this localization to the hTR-binding region of the protein by deletion analysis is mapped, and it is proposed that the nucleolar localization of h TERT involves more than just the association with the h TR subunit.

Journal ArticleDOI
TL;DR: New ideas are generated about cell cycle control of nucleolar assembly, the dynamics of the delivery of the RNA processing machinery, the formation of prenucleolar bodies, the role of precursor ribosomal RNAs in stabilizing the nucleolar machinery and the fact that nucleolarAssembly is completed by cooperative interactions between chromosome territories.
Abstract: The nucleolus is a large nuclear domain and the site of ribosome biogenesis. It is also at the parting of the ways of several cellular processes, including cell cycle progression, gene silencing, and ribonucleoprotein complex formation. Consequently, a functional nucleolus is crucial for cell survival. Recent investigations of nucleolar assembly during the cell cycle and during embryogenesis have provided an integrated view of the dynamics of this process. Moreover, they have generated new ideas about cell cycle control of nucleolar assembly, the dynamics of the delivery of the RNA processing machinery, the formation of prenucleolar bodies, the role of precursor ribosomal RNAs in stabilizing the nucleolar machinery and the fact that nucleolar assembly is completed by cooperative interactions between chromosome territories. This has opened a new area of research into the dynamics of nuclear organization and the integration of nuclear functions.

Journal ArticleDOI
Yinhua Yang1, Yaohui Chen1, Chunyu Zhang1, Hai Huang1, Sherman M. Weissman1 
TL;DR: The intracellular distribution of human TERT (hTERT) protein is investigated and it is observed that hTERT protein in individual cells could concentrate in or be excluded from the nucleolus, and a nucleolar targeting signal in the h TERT protein is identified.

Journal ArticleDOI
TL;DR: It is proposed that in mammalian cells pescadillo is essential for ribosome biogenesis and nucleologenesis and that disruption to its function results in cell cycle arrest.

Journal ArticleDOI
TL;DR: In dengue virus (DEN) particles, the core protein is a structural protein of the nucleocapsid that first appeared in the cytoplasm and then in the nuclei and nucleoli of infected cells.
Abstract: In dengue virus (DEN) particles, the core protein is a structural protein of the nucleocapsid. The core protein is known to be present in the nucleus of DEN-infected cells but there have been conflicting reports as to whether it is also present in the nucleolus. To clarify this, the intracellular location of the core protein was examined using a monoclonal antibody, 15B11, which was produced in this study. Immunofluorescence staining with this antibody demonstrated that the core protein first appeared in the cytoplasm and then in the nuclei and nucleoli of infected cells. Nuclear localization of the core protein was determined to be independent of other DEN proteins, since recombinant core proteins still entered the nuclei and nucleoli of cells transfected with only the core protein gene. Three putative nuclear localization signal motifs have been predicted to be present on the core protein. Deletion of the first one (KKAR), located at aa 6-9, and mutation of the second one (KKSK), located at aa 73-76, did not eliminate the nuclear localization property of the core protein. The third motif with a bipartite structure, RKeigrmlnilnRRRR, located at aa 85-100, was determined to be responsible for the nuclear localization of the core protein, since the core protein without this motif was located exclusively in the cytoplasm of DEN-infected cells and that this motif mediated nuclear localization of a normally cytoplasmic protein.

Journal ArticleDOI
TL;DR: It is reported that exogenous angiogenin enhances the production of 45S rRNA in endothelial cells, and reduction of endogenous angiogenicin inhibits its transcription.

Journal ArticleDOI
TL;DR: A model in which Bop1 serves as an essential factor in ribosome formation that coordinates processing of the spacer regions in pre-rRNA is proposed, which demonstrates that Bop 1 is required for proper processing at four distinct sites located within the internal transcribed spacers ITS1 and ITS2 and the 3′ external spacer.

Journal ArticleDOI
TL;DR: It is concluded that Cdc14 is released from the nucleolus at the onset of anaphase in a CDC5-dependent manner and that MEN factors possibly regulate CDC14 release from the SPB.

Journal ArticleDOI
TL;DR: A chimeric small nucleolar RNA-TAR decoy is constructed that localizes to the nucleoli of human cells and colocalizes in theucleolus with a Tat-enhanced GFP fusion protein and suggests a role for the nucleolus in HIV-1 viral replication.
Abstract: Tat is a critical regulatory factor in HIV-1 gene expression. It mediates the transactivation of transcription from the HIV-1 LTR by binding to the transactivation response (TAR) element in a complex with cyclin T1. Because of its critical and early role in HIV gene expression, Tat and its interaction with the TAR element constitute important therapeutic targets for the treatment of HIV-1 infection. Based on the known nucleolar localization properties of Tat, we constructed a chimeric small nucleolar RNA-TAR decoy that localizes to the nucleoli of human cells and colocalizes in the nucleolus with a Tat-enhanced GFP fusion protein. When the chimeric RNA was stably expressed in human T lymphoblastoid CEM cells it potently inhibited HIV-1 replication. These results demonstrate that the nucleolar trafficking of Tat is critical for HIV-1 replication and suggests a role for the nucleolus in HIV-1 viral replication.

Journal ArticleDOI
TL;DR: CP‐induced nucleolar targeting of p53 appears to be selective because p73, another member of the p53 gene family, accumulated primarily in nuclei in response to CP, and p14ARF showed an inverse intranuclear redistribution.
Abstract: We previously reported that therapy of human cervical carcinoma HeLa cells with CP induced segregation of nucleoli and changes of nuclei characteristic of apoptosis. We raised the question of whether p53 can be reactivated by chemotherapy in HeLa cells despite the presence of HPV-encoded E6 activity. Cellular levels of p53 protein increased after CP treatment, reaching a maximum after 6 hr. p53 protein accumulated preferentially in the nucleoli, with a peak after 15 hr. CP-induced nucleolar targeting of p53 appears to be selective because p73, another member of the p53 gene family, accumulated primarily in nuclei in response to CP. Monitoring of the intranuclear distribution of Hdm-2, a negative regulator of p53, revealed this protein in the nucleoli of untreated controls translocated into chromatin during CP therapy. Interestingly, p14(ARF) showed an inverse intranuclear redistribution. Proteasome inhibitors were not able to mimic the effect of CP on p53 levels. Since the reduced stability of wild-type p53 protein in HeLa cells is a consequence of its enhanced ubiquitination by virally encoded E6 protein, resulting in its accelerated degradation, we checked the cellular level of E6 during CP therapy. Six hours after application of CP, E6 protein expression was markedly reduced. This coincided with the increase of cellular p53 and preceded the nucleolar accumulation of p53 protein, indicating that repression of virally coded E6 protein by CP contributes to the restoration of p53 expression.

Journal ArticleDOI
TL;DR: It is shown that purified snoRNPs are able to reproduce the site-specific methylation pattern on target RNA and that the predicted S-adenosyl-l-methionine-binding region of Nop1p is responsible for the catalytic activity.
Abstract: Small nucleolar RNAs (snoRNAs) are associated in ribonucleoprotein particles localized to the nucleolus (snoRNPs). Most of the members of the box C/D family function in directing site-specific 2-O-methylation of substrate RNAs. Although the selection of the target nucleotide requires the antisense element and the conserved box D or D of the snoRNA, the methyltransferase activity is supposed to reside in one of the protein components. Through protein tagging of a snoRNP-specific factor, we purified to homogeneity box C/D snoRNPs from the yeast Saccharomyces cerevisiae. Mass spectrometric analysis demonstrated the presence of Nop1p, Nop58p, Nop56p, and Snu13p as integral components of the particle. We show that purified snoRNPs are able to reproduce the site-specific methylation pattern on target RNA and that the predicted S-adenosylL-methionine-binding region of Nop1p is responsible for the catalytic activity.

Journal ArticleDOI
TL;DR: It is demonstrated that Daxx interacts in vitro and in vivo with MSP58 via its NH2-terminal segment, which is distinct from the binding region of Fas, apoptosis signal-regulating kinase 1, and promyelocytic leukemia protein, suggesting a unique modulatory role of MSP 58 on DaxX function.

Journal ArticleDOI
TL;DR: The data show that BrUTP incorporation initially takes place in the fibrillar centers and that elongating rRNAs rapidly enter the surrounding dense fibrillsar component, allowing a model for the three-dimensional organization of transcribing rDNA genes within the nucleolus to be proposed.
Abstract: In this work, we have localized transcribing rRNA genes at the ultrastructural level and described their three-dimensional organization within the nucleolus by electron tomography. Isolated nucleoli, which exhibit a reduced transcriptional rate, were used to determine the sites of initial BrUTP incorporation (i.e. rRNA synthesis by the transcriptional machinery). Using pulse-chase experiments with BrUTP and an elongation inhibitor, cordycepin, it was possible to precisely localize the initial sites of BrUTP incorporation. Our data show that BrUTP incorporation initially takes place in the fibrillar centers and that elongating rRNAs rapidly enter the surrounding dense fibrillar component. Furthermore, we investigated the spatial arrangement of RNA polymerase I molecules within the whole volume of the fibrillar centers. Electron tomography was performed on thick sections of cells that had been labeled with anti-RNA polymerase I antibodies prior to embedding. Detailed tomographic analyses revealed that RNA polymerase I molecules are mainly localized within discrete clusters. In each of them, RNA polymerase I molecules were grouped as several coils, 60 nm in diameter. Overall, these findings have allowed us to propose a model for the three-dimensional organization of transcribing rDNA genes within the nucleolus.

Journal ArticleDOI
TL;DR: It is shown with chromosomal immunostaining and in situ hybridization that ribosomal subunits are present at transcription sites of Drosophila salivary gland chromosomes, and kinetics of recruitment following transcription initiation suggest that the association is with newly transcribed pol II transcripts.