scispace - formally typeset
Search or ask a question
Topic

Nucleolus

About: Nucleolus is a research topic. Over the lifetime, 5873 publications have been published within this topic receiving 232435 citations. The topic is also known as: GO:0005730 & cell nucleolus.


Papers
More filters
Journal ArticleDOI
TL;DR: The results establish proteasomal proteolysis as an intrinsic function of the cell nucleus as well as signature proteins of subnuclear domains, including ubiquitin, nucleoplasmic proteasomes and RNA polymerase II.
Abstract: The ubiquitin proteasome system plays a fundamental role in the regulation of cellular processes by degradation of endogenous proteins. Proteasomes are localized in both, the cytoplasm and the cell nucleus, however, little is known about nuclear proteolysis. Here, fluorogenic precursor substrates enabled detection of proteasomal activity in nucleoplasmic cell fractions (turnover 0.0541 μM/minute) and nuclei of living cells (turnover 0.0472 μM/minute). By contrast, cell fractions of nucleoli or nuclear envelopes did not contain proteasomal activity. Microinjection of ectopic fluorogenic protein DQ-ovalbumin revealed that proteasomal protein degradation occurs in distinct nucleoplasmic foci, which partially overlap with signature proteins of subnuclear domains, such as splicing speckles or promyelocytic leukemia bodies, ubiquitin, nucleoplasmic proteasomes and RNA polymerase II. Our results establish proteasomal proteolysis as an intrinsic function of the cell nucleus.

112 citations

Journal ArticleDOI
TL;DR: It is demonstrated that neo-NORs, UBF-binding site arrays coupled with rDNA transcription units, direct the de novo biogenesis of functional compartmentalized neonucleoli irrespective of their site of chromosomal integration.
Abstract: Human cell nuclei are functionally organized into structurally stable yet dynamic bodies whose cell cycle inheritance is poorly understood. Here, we investigate the biogenesis and propagation of nucleoli, sites of ribosome biogenesis and key regulators of cellular growth. Nucleolar and cell cycles are intimately connected. Nucleoli disappear during mitosis, reforming around prominent uncharacterized chromosomal features, nucleolar organizer regions (NORs). By examining the effects of UBF depletion on both endogenous NORs and synthetic pseudo-NORs, we reveal its essential role in maintaining competency and establishing a bookmark on mitotic NORs. Furthermore, we demonstrate that neo-NORs, UBF-binding site arrays coupled with rDNA transcription units, direct the de novo biogenesis of functional compartmentalized neonucleoli irrespective of their site of chromosomal integration. For the first time, we establish the sequence requirements for nucleolar biogenesis and provide proof that this is a staged process where UBF-dependent mitotic bookmarking precedes function-dependent nucleolar assembly.

111 citations

Journal ArticleDOI
TL;DR: It is proposed that in mammalian cells pescadillo is essential for ribosome biogenesis and nucleologenesis and that disruption to its function results in cell cycle arrest.

111 citations

Journal ArticleDOI
TL;DR: In dengue virus (DEN) particles, the core protein is a structural protein of the nucleocapsid that first appeared in the cytoplasm and then in the nuclei and nucleoli of infected cells.
Abstract: In dengue virus (DEN) particles, the core protein is a structural protein of the nucleocapsid. The core protein is known to be present in the nucleus of DEN-infected cells but there have been conflicting reports as to whether it is also present in the nucleolus. To clarify this, the intracellular location of the core protein was examined using a monoclonal antibody, 15B11, which was produced in this study. Immunofluorescence staining with this antibody demonstrated that the core protein first appeared in the cytoplasm and then in the nuclei and nucleoli of infected cells. Nuclear localization of the core protein was determined to be independent of other DEN proteins, since recombinant core proteins still entered the nuclei and nucleoli of cells transfected with only the core protein gene. Three putative nuclear localization signal motifs have been predicted to be present on the core protein. Deletion of the first one (KKAR), located at aa 6-9, and mutation of the second one (KKSK), located at aa 73-76, did not eliminate the nuclear localization property of the core protein. The third motif with a bipartite structure, RKeigrmlnilnRRRR, located at aa 85-100, was determined to be responsible for the nuclear localization of the core protein, since the core protein without this motif was located exclusively in the cytoplasm of DEN-infected cells and that this motif mediated nuclear localization of a normally cytoplasmic protein.

111 citations

Journal ArticleDOI
TL;DR: It is shown that UV induces ING1 to translocate to the nucleolus and that this translocation may facilitate apoptosis, which is shown to facilitate cell cycle progression and affect apoptosis.
Abstract: The ING1 candidate tumor suppressor is downregulated in a variety of primary tumors and established cancer cell lines. Blocking its expression experimentally promotes unregulated growth in vitro and in vivo, using cell and animal models. Alternative splicing products encode proteins that localize to the nucleus, inhibit cell cycle progression and affect apoptosis in different model systems. Here we show that ING1 proteins translocate to the nucleolus 12-48 h after UV-induced DNA damage. When a small 50 amino acid portion of ING1 was fused to green fluorescent protein, the fusion protein was efficiently targeted to the nucleolus, indicating that ING1 possesses an intrinsic nucleolar targeting sequence (NTS). We mapped this activity to two distinct 4 amino acid regions, which individually direct fused heterologous proteins to the nucleolus. Overexpression of ING1 induced apoptosis of primary fibroblasts in the presence and absence of UV exposure. In contrast, NTS mutants of ING1 that were not targeted to the nucleolus did not efficiently induce apoptosis when overexpressed and instead protected cells from UV-induced apoptosis. Taken together, these results indicate that UV induces ING1 to translocate to the nucleolus and that this translocation may facilitate apoptosis.

111 citations


Network Information
Related Topics (5)
RNA
111.6K papers, 5.4M citations
82% related
DNA
107.1K papers, 4.7M citations
82% related
Cellular differentiation
90.9K papers, 6M citations
81% related
Cell culture
133.3K papers, 5.3M citations
80% related
Gene
211.7K papers, 10.3M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023145
2022209
2021143
2020125
2019139
2018121