scispace - formally typeset
Search or ask a question
Topic

Nucleolus

About: Nucleolus is a research topic. Over the lifetime, 5873 publications have been published within this topic receiving 232435 citations. The topic is also known as: GO:0005730 & cell nucleolus.


Papers
More filters
Journal ArticleDOI
TL;DR: Genomics of a nuclear compartment of the eukaryotic cell revealed the pattern of nucleolus-associated chromatin domains (NADs) in the linear human genome and identified different gene families and certain satellite repeats as the major building blocks of NADs.
Abstract: We report for the first time the genomics of a nuclear compartment of the eukaryotic cell. 454 sequencing and microarray analysis revealed the pattern of nucleolus-associated chromatin domains (NADs) in the linear human genome and identified different gene families and certain satellite repeats as the major building blocks of NADs, which constitute about 4% of the genome. Bioinformatic evaluation showed that NAD-localized genes take part in specific biological processes, like the response to other organisms, odor perception, and tissue development. 3D FISH and immunofluorescence experiments illustrated the spatial distribution of NAD-specific chromatin within interphase nuclei and its alteration upon transcriptional changes. Altogether, our findings describe the nature of DNA sequences associated with the human nucleolus and provide insights into the function of the nucleolus in genome organization and establishment of nuclear architecture.

353 citations

Journal ArticleDOI
TL;DR: The first proteomic analysis of plant (Arabidopsis thaliana) nucleoli is described, in which 217 proteins are identified, allowing a direct comparison of the proteomes of an important nuclear structure between two widely divergent species: human and Arabidopsis.
Abstract: The eukaryotic nucleolus is involved in ribosome biogenesis and a wide range of other RNA metabolism and cellular functions. An important step in the functional analysis of the nucleolus is to determine the complement of proteins of this nuclear compartment. Here, we describe the first proteomic analysis of plant (Arabidopsis thaliana) nucleoli, in which we have identified 217 proteins. This allows a direct comparison of the proteomes of an important nuclear structure between two widely divergent species: human and Arabidopsis. The comparison identified many common proteins, plant-specific proteins, proteins of unknown function found in both proteomes, and proteins that were nucleolar in plants but nonnucleolar in human. Seventy-two proteins were expressed as GFP fusions and 87% showed nucleolar or nucleolar-associated localization. In a striking and unexpected finding, we have identified six components of the postsplicing exon-junction complex (EJC) involved in mRNA export and nonsense-mediated decay (NMD)/mRNA surveillance. This association was confirmed by GFP-fusion protein localization. These results raise the possibility that in plants, nucleoli may have additional functions in mRNA export or surveillance.

352 citations

Journal ArticleDOI
TL;DR: It is suggested that the LLPS model provides the starting point for a unifying quantitative framework for the assembly, structural maintenance and function of the nucleolus, with implications for gene regulation and ribonucleoprotein particle assembly throughout the nucleus.
Abstract: The nucleolus is the most prominent nuclear body and serves a fundamentally important biological role as a site of ribonucleoprotein particle assembly, primarily dedicated to ribosome biogenesis. Despite being one of the first intracellular structures visualized historically, the biophysical rules governing its assembly and function are only starting to become clear. Recent studies have provided increasing support for the concept that the nucleolus represents a multilayered biomolecular condensate, whose formation by liquid–liquid phase separation (LLPS) facilitates the initial steps of ribosome biogenesis and other functions. Here, we review these biophysical insights in the context of the molecular and cell biology of the nucleolus. We discuss how nucleolar function is linked to its organization as a multiphase condensate and how dysregulation of this organization could provide insights into still poorly understood aspects of nucleolus-associated diseases, including cancer, ribosomopathies and neurodegeneration as well as ageing. We suggest that the LLPS model provides the starting point for a unifying quantitative framework for the assembly, structural maintenance and function of the nucleolus, with implications for gene regulation and ribonucleoprotein particle assembly throughout the nucleus. The LLPS concept is also likely useful in designing new therapeutic strategies to target nucleolar dysfunction. The nucleolus is a membraneless organelle involved in ribonucleoprotein assembly, including ribosome biogenesis. Recent evidence indicates that the nucleolus is a biomolecular condensate that forms via liquid–liquid phase separation (LLPS), and insights from studies within the LLPS framework are increasing our understanding of the relationship between nucleolar structure and function.

352 citations

Journal ArticleDOI
TL;DR: Once formed, aggresomes can impair the function of the proteasome system, which may promote apoptosis, and under favorable conditions they can be cleared, probably by autophagy.

350 citations

Journal ArticleDOI
21 Nov 2003-Science
TL;DR: The results show that tRNA genes, though dispersed in the linear genome, colocalize with 5S ribosomal DNA and U14 small nucleolar RNA at the nucleolus.
Abstract: Early transfer RNA (tRNA) processing events in Saccharomyces cerevisiae are coordinated in the nucleolus, the site normally associated with ribosome biosynthesis. To test whether spatial organization of the tRNA pathway begins with nucleolar clustering of the genes, we have probed the subnuclear location of five different tRNA gene families. The results show that tRNA genes, though dispersed in the linear genome, colocalize with 5S ribosomal DNA and U14 small nucleolar RNA at the nucleolus. Nucleolar localization requires tRNA gene transcription-complex formation, because inactivation of the promoter at a single locus removes its nucleolar association. This organization of tRNA genes must profoundly affect the spatial packaging of the genome and raises the question of whether gene types might be coordinated in three dimensions to regulate transcription.

349 citations


Network Information
Related Topics (5)
RNA
111.6K papers, 5.4M citations
82% related
DNA
107.1K papers, 4.7M citations
82% related
Cellular differentiation
90.9K papers, 6M citations
81% related
Cell culture
133.3K papers, 5.3M citations
80% related
Gene
211.7K papers, 10.3M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023145
2022209
2021143
2020125
2019139
2018121