scispace - formally typeset
Search or ask a question
Topic

Nucleolus

About: Nucleolus is a research topic. Over the lifetime, 5873 publications have been published within this topic receiving 232435 citations. The topic is also known as: GO:0005730 & cell nucleolus.


Papers
More filters
Journal ArticleDOI
Anna Greco1
TL;DR: This work has established that during infection of cells with various types of human viruses, nucleoli undergo important morphological modifications that play a role in some steps of the viral cycle, and in fundamental cellular pathways.
Abstract: Viruses are intracellular pathogens that have to usurp some of the cellular machineries to provide an optimal environment for their own replication. An increasing number of reports reveal that many viruses induce modifications of nuclear substructures including nucleoli, whether they replicate or not in the nucleus of infected cells. Indeed, during infection of cells with various types of human viruses, nucleoli undergo important morphological modifications. A large number of viral components traffic to and from the nucleolus where they interact with different cellular and/or viral factors, numerous host nucleolar proteins are redistributed in other cell compartments or are modified and some cellular proteins are delocalized in the nucleolus of infected cells. Well-documented studies have established that several of these nucleolar modifications play a role in some steps of the viral cycle, and also in fundamental cellular pathways. The nucleolus itself is the place where several essential steps of the viral cycle take place. In other cases, viruses divert host nucleolar proteins from their known functions in order to exert new unexpected role(s).

75 citations

Journal ArticleDOI
TL;DR: A greater understanding of the nuclear localization of nucleocapsid proteins has the potential to enhance therapeutic strategies as it can be a target for the development of live-attenuated vaccines or antiviral drugs.
Abstract: Most viruses with non-segmented single stranded RNA genomes complete their life cycle in the cytoplasm of infected cells. However, despite undergoing replication in the cytoplasm, the structural proteins of some of these RNA viruses localize to the nucleus at specific times in the virus life cycle, primarily early in infection. Limited evidence suggests that this enhances successful viral replication by interfering with or inhibiting the host antiviral response. Nucleocapsid proteins of RNA viruses have a well-established, essential cytoplasmic role in virus replication and assembly. Intriguingly, nucleocapsid proteins of some RNA viruses also localize to the nucleus/nucleolus of infected cells. Their nuclear function is less well understood although significant advances have been made in recent years. This review will focus on the nucleocapsid protein of cytoplasmic enveloped RNA viruses, including their localization to the nucleus/nucleolus and function therein. A greater understanding of the nuclear localization of nucleocapsid proteins has the potential to enhance therapeutic strategies as it can be a target for the development of live-attenuated vaccines or antiviral drugs.

75 citations

Journal ArticleDOI
TL;DR: The Gu protein fused with glutathione S-transferase contains ATP-dependent RNA helicase activity which preferably translocates in the 5'-->3' direction and its RNA folding activity, RNA-dependent ATPase and dATPase activities, and its translocation direction are similar to those ofRNA helicase II.
Abstract: Watermelon stomach is characterized by prominent stripes of ectatic vascular tissue in the stomach similar to stripes on a watermelon; in patients with this disorder chronic gastrointestinal bleeding occurs and approximately half of these patients have associated autoimmune disorders. In the serum of one patient, an antinucleolar antibody titer of 1:25 600 was found; the antibodies specifically recognized an approximately 100 kDa nucleolar protein, which we referred to as the 'Gu' protein. Its cDNA was cloned and sequenced. The Gu protein is a member of a new subgroup of RNA helicases, the DEXD box family. Gu protein fused with glutathione S-transferase contains ATP-dependent RNA helicase activity which preferably translocates in the 5'-->3' direction. Its RNA folding activity, RNA-dependent ATPase and dATPase activities, and its translocation direction are similar to those of RNA helicase II [Flores-Rozas, H. and Hurwitz, J. (1993) J. Biol. Chem. 268, 21372-21383]. Sequencing of 209 amino acids of RNA helicase II peptides showed 96.7% identity with the cDNA-derived amino acid sequence of the Gu protein. The precise biological roles of this RNA helicase in the biogenesis of ribosomal RNA and the pathogenesis of watermelon disease and autoimmune disorder require further study.

75 citations

Journal Article
TL;DR: A fast and reliable purification protocol to obtain yeast nuclei in intact and pure form and in a reasonable yield is developed, which leads to the identification of an integral nuclear membrane protein and a high-abundance 38-kDa protein which is located in the yeast nucleolus.

75 citations

Journal ArticleDOI
TL;DR: This study provides direct evidence linking SUMO modification with snoRNP function, and reveals a role for SUMOylation in the biogenesis and/or function of small nucleolar ribonucleoprotein complexes (snoRNPs) via the targeting of Nhp2 and Nop58.

75 citations


Network Information
Related Topics (5)
RNA
111.6K papers, 5.4M citations
82% related
DNA
107.1K papers, 4.7M citations
82% related
Cellular differentiation
90.9K papers, 6M citations
81% related
Cell culture
133.3K papers, 5.3M citations
80% related
Gene
211.7K papers, 10.3M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023145
2022209
2021143
2020125
2019139
2018121