scispace - formally typeset
Search or ask a question
Topic

Nucleolus

About: Nucleolus is a research topic. Over the lifetime, 5873 publications have been published within this topic receiving 232435 citations. The topic is also known as: GO:0005730 & cell nucleolus.


Papers
More filters
Journal ArticleDOI
TL;DR: Results, obtained by direct, real-time observation of fluorescent RNA molecules inside the nucleus of living mammalian cells, suggest that the processing of SRP RNA or its ribonucleoprotein assembly into the SRP involves a nucleolar phase.
Abstract: The signal recognition particle (SRP) of eukaryotic cells is a cytoplasmic ribonucleoprotein machine that arrests the translational elongation of nascent secretory and membrane proteins and facilitates their transport into the endoplasmic reticulum. The spatial pathway of SRP RNA processing and ribonucleoprotein assembly in the cell is not known. In the present investigation, microinjection of fluorescently tagged SRP RNA into the nucleus of mammalian cells was used to examine its intranuclear sites of localization. Microinjection of SRP RNA into the nuclei of normal rat kidney (NRK) epithelial cells maintained at 37°C on the microscope stage resulted in a very rapid initial localization in nucleoli, followed by a progressive decline of nucleolar signal and an increase of fluorescence at discrete sites in the cytoplasm. Nuclear microinjection of a molecule corresponding to a major portion of the Alu domain of SRP RNA revealed a pattern of rapid nucleolar localization followed by cytoplasmic appearance of signal that was similar to the results obtained with full-length SRP RNA. In contrast, a molecule corresponding to the S domain of SRP RNA did not display nucleolar localization to the extent observed with full-length SRP RNA. An SRP RNA molecule lacking helix 6 of the S domain displayed normal nucleolar localization, whereas one lacking helix 8 of the S domain did not. These results, obtained by direct, real-time observation of fluorescent RNA molecules inside the nucleus of living mammalian cells, suggest that the processing of SRP RNA or its ribonucleoprotein assembly into the SRP involves a nucleolar phase.

150 citations

Journal ArticleDOI
TL;DR: The relationship between overall nuclear architecture, chromosome territories, and transcription sites within the nucleus, using three-dimensional confocal microscopy of well preserved tissue sections of wheat roots is determined.
Abstract: We have determined the relationship between overall nuclear architecture, chromosome territories, and transcription sites within the nucleus, using three-dimensional confocal microscopy of well preserved tissue sections of wheat roots. Chromosome territories were visualized by GISH using rye genomic probe in wheat/rye translocation and addition lines. The chromosomes appeared as elongated regions and showed a clear centromere–telomere polarization, with the two visualized chromosomes lying approximately parallel to one another across the nucleus. Labeling with probes to telomeres and centromeres confirmed a striking Rabl configuration in all cells, with a clear clustering of the centromeres, and cell files often maintained a common polarity through several division cycles. Transcription sites were detected by BrUTP incorporation in unfixed tissue sections and revealed a pattern of numerous foci uniformly distributed throughout the nucleoplasm, as well as more intensely labeled foci in the nucleoli. It has been suggested that the gene-rich regions in wheat chromosomes are clustered towards the telomeres. However, we found no indication of a difference in concentration of transcription sites between telomere and centromere poles of the nucleus. Neither could we detect any evidence that the transcription sites were preferentially localized with respect to the chromosome territorial boundaries.

150 citations

Journal ArticleDOI
TL;DR: Nuclear topographic organization is dependent on a continued transcription of nuclear genes, but not of the rRNA genes, as well as being reversible in cell cultures exposed to nontoxic doses of transcriptional inhibitors.

149 citations

Journal Article
TL;DR: It is suggested that 4-nitroquinoline N -oxide, like actinomycin D, may have a specific effect on the synthesis of DNA-dependent RNA.
Abstract: Summary Actinomycin D produced specific morphologic alterations in the nucleoli and nuclei of Chang liver cells in tissue culture. These changes consisted of: ( a ) a progressive decrease in the size of the nucleoli, ( b ) redistribution of the components of the nucleolus to produce two types of nucleolar “caps,” and ( c ) production of intranuclear inclusions. These nuclear changes were identical to those produced by the carcinogen 4-nitroquinoline N -oxide. Nuclear and nucleolar changes of this type were not produced by nitrogen mustard or by 2,4-dinitrophenol. These findings suggest that 4-nitroquinoline N -oxide, like actinomycin D, may have a specific effect on the synthesis of DNA-dependent RNA.

149 citations

Journal ArticleDOI
TL;DR: It is proposed that the mechanisms governing both formation and maintenance of functional nucleoli involve CDK activities and couple the cell cycle to ribosome biogenesis.
Abstract: In higher eukaryotic cells, the nucleolus is a nuclear compartment assembled at the beginning of interphase, maintained during interphase, and disorganized during mitosis. Even if its structural organization appears to be undissociable from its function in ribosome biogenesis, the mechanisms that govern the formation and maintenance of the nucleolus are not elucidated. To determine if cell cycle regulators are implicated, we investigated the putative role of the cyclin-dependent kinases (CDKs) on ribosome biogenesis and nucleolar organization. Inhibition of CDK1–cyclin B during mitosis leads to resumption of rDNA transcription, but is not sufficient to induce proper processing of the pre-rRNA and total relocalization of the processing machinery into rDNA transcription sites. Similarly, at the exit from mitosis, both translocation of the late processing machinery and pre-rRNA processing are impaired in a reversible manner by CDK inhibitors. Therefore, CDK activity seems indispensable for the building of functional nucleoli. Furthermore, inhibition of CDKs in interphasic cells also hampered proper pre-rRNA processing and induced a dramatic disorganization of the nucleolus. Thus, we propose that the mechanisms governing both formation and maintenance of functional nucleoli involve CDK activities and couple the cell cycle to ribosome biogenesis.

149 citations


Network Information
Related Topics (5)
RNA
111.6K papers, 5.4M citations
82% related
DNA
107.1K papers, 4.7M citations
82% related
Cellular differentiation
90.9K papers, 6M citations
81% related
Cell culture
133.3K papers, 5.3M citations
80% related
Gene
211.7K papers, 10.3M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023145
2022209
2021143
2020125
2019139
2018121