scispace - formally typeset
Search or ask a question
Topic

Nucleotide excision repair

About: Nucleotide excision repair is a research topic. Over the lifetime, 9239 publications have been published within this topic receiving 528901 citations. The topic is also known as: Transcription-coupled repair & NER.


Papers
More filters
Journal ArticleDOI
TL;DR: A method that assigns a score to each gene on the basis of change in gene expression relative to the standard deviation of repeated measurements is described, suggesting that this repair pathway for UV-damaged DNA might play a previously unrecognized role in repairing DNA damaged by ionizing radiation.
Abstract: Microarrays can measure the expression of thousands of genes to identify changes in expression between different biological states. Methods are needed to determine the significance of these changes while accounting for the enormous number of genes. We describe a method, Significance Analysis of Microarrays (SAM), that assigns a score to each gene on the basis of change in gene expression relative to the standard deviation of repeated measurements. For genes with scores greater than an adjustable threshold, SAM uses permutations of the repeated measurements to estimate the percentage of genes identified by chance, the false discovery rate (FDR). When the transcriptional response of human cells to ionizing radiation was measured by microarrays, SAM identified 34 genes that changed at least 1.5-fold with an estimated FDR of 12%, compared with FDRs of 60 and 84% by using conventional methods of analysis. Of the 34 genes, 19 were involved in cell cycle regulation and 3 in apoptosis. Surprisingly, four nucleotide excision repair genes were induced, suggesting that this repair pathway for UV-damaged DNA might play a previously unrecognized role in repairing DNA damaged by ionizing radiation.

12,102 citations

Journal ArticleDOI
14 Apr 2005-Nature
TL;DR: BRCA1 or BRCA2 dysfunction unexpectedly and profoundly sensitizes cells to the inhibition of PARP enzymatic activity, resulting in chromosomal instability, cell cycle arrest and subsequent apoptosis, illustrating how different pathways cooperate to repair damage.
Abstract: BRCA1 and BRCA2 are important for DNA double-strand break repair by homologous recombination, and mutations in these genes predispose to breast and other cancers. Poly(ADP-ribose) polymerase (PARP) is an enzyme involved in base excision repair, a key pathway in the repair of DNA single-strand breaks. We show here that BRCA1 or BRCA2 dysfunction unexpectedly and profoundly sensitizes cells to the inhibition of PARP enzymatic activity, resulting in chromosomal instability, cell cycle arrest and subsequent apoptosis. This seems to be because the inhibition of PARP leads to the persistence of DNA lesions normally repaired by homologous recombination. These results illustrate how different pathways cooperate to repair damage, and suggest that the targeted inhibition of particular DNA repair pathways may allow the design of specific and less toxic therapies for cancer.

5,650 citations

Book
01 Jan 2006
TL;DR: Nucleotide excision repair in mammalian cells: genes and proteins Mismatch repair The SOS response and recombinational repair in prokaryotes Mutagenesis in proKaryote Mutagenisation in eukaryotes Other DNA damage tolerance responses in eUKaryotes.
Abstract: DNA damage Mutations The reversal of base damage Base excision repair Nucleotide excision repair in prokaryotes Nucleotide excision repair in lower eukaryotes Nucleotide excision repair in mammalian cells: general considerations and chromatin dynamics Nucleotide excision repair in mammalian cells: genes and proteins Mismatch repair The SOS response and recombinational repair in prokaryotes Mutagenesis in prokaryotes Mutagenesis in eukaryotes Other DNA damage tolerance responses in eukaryotes Hereditary diseases with defective responses to DNA damage

5,297 citations

Journal ArticleDOI
TL;DR: The molecular mechanisms of DNA repair and the DNA damage checkpoints in mammalian cells are analyzed and apoptosis, which eliminates heavily damaged or seriously deregulated cells, is analyzed.
Abstract: DNA damage is a relatively common event in the life of a cell and may lead to mutation, cancer, and cellular or organismic death. Damage to DNA induces several cellular responses that enable the cell either to eliminate or cope with the damage or to activate a programmed cell death process, presumably to eliminate cells with potentially catastrophic mutations. These DNA damage response reactions include: (a) removal of DNA damage and restoration of the continuity of the DNA duplex; (b) activation of a DNA damage checkpoint, which arrests cell cycle progression so as to allow for repair and prevention of the transmission of damaged or incompletely replicated chromosomes; (c) transcriptional response, which causes changes in the transcription profile that may be beneficial to the cell; and (d) apoptosis, which eliminates heavily damaged or seriously deregulated cells. DNA repair mechanisms include direct repair, base excision repair, nucleotide excision repair, double-strand break repair, and cross-link repair. The DNA damage checkpoints employ damage sensor proteins, such as ATM, ATR, the Rad17-RFC complex, and the 9-1-1 complex, to detect DNA damage and to initiate signal transduction cascades that employ Chk1 and Chk2 Ser/Thr kinases and Cdc25 phosphatases. The signal transducers activate p53 and inactivate cyclin-dependent kinases to inhibit cell cycle progression from G1 to S (the G1/S checkpoint), DNA replication (the intra-S checkpoint), or G2 to mitosis (the G2/M checkpoint). In this review the molecular mechanisms of DNA repair and the DNA damage checkpoints in mammalian cells are analyzed.

3,171 citations

Journal ArticleDOI
TL;DR: Patients lacking normal NHEJ are not only sensitive to ionizing radiation (IR), but also severely immunodeficient in the range of DNA end substrate configurations upon which they can act.
Abstract: Double-strand DNA breaks are common events in eukaryotic cells, and there are two major pathways for repairing them: homologous recombination (HR) and nonhomologous DNA end joining (NHEJ). The various causes of double-strand breaks (DSBs) result in a diverse chemistry of DNA ends that must be repaired. Across NHEJ evolution, the enzymes of the NHEJ pathway exhibit a remarkable degree of structural tolerance in the range of DNA end substrate configurations upon which they can act. In vertebrate cells, the nuclease, DNA polymerases, and ligase of NHEJ are the most mechanistically flexible and multifunctional enzymes in each of their classes. Unlike repair pathways for more defined lesions, NHEJ repair enzymes act iteratively, act in any order, and can function independently of one another at each of the two DNA ends being joined. NHEJ is critical not only for the repair of pathologic DSBs as in chromosomal translocations, but also for the repair of physiologic DSBs created during variable (diversity) joining [V(D)J] recombination and class switch recombination (CSR). Therefore, patients lacking normal NHEJ are not only sensitive to ionizing radiation (IR), but also severely immunodeficient.

2,508 citations


Network Information
Related Topics (5)
DNA
107.1K papers, 4.7M citations
88% related
Regulation of gene expression
85.4K papers, 5.8M citations
85% related
Transcription factor
82.8K papers, 5.4M citations
84% related
Protein kinase A
68.4K papers, 3.9M citations
84% related
RNA
111.6K papers, 5.4M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023151
2022129
2021164
2020207
2019185
2018175