scispace - formally typeset
Search or ask a question
Topic

Numerical aperture

About: Numerical aperture is a research topic. Over the lifetime, 7833 publications have been published within this topic receiving 115905 citations. The topic is also known as: NA.


Papers
More filters
Journal ArticleDOI
Arthur Ashkin1
TL;DR: It is shown that good trapping requires high convergence beams from a high numerical aperture objective and a comparison is given of traps made using bright field or differential interference contrast optics and phase contrast optics.

1,609 citations

Journal ArticleDOI
TL;DR: It is shown that by judicious design of nanofins on a surface, it is possible to simultaneously control the phase, group delay and group delay dispersion of light, thereby achieving a transmissive achromatic metalens with large bandwidth.
Abstract: A key goal of metalens research is to achieve wavefront shaping of light using optical elements with thicknesses on the order of the wavelength. Such miniaturization is expected to lead to compact, nanoscale optical devices with applications in cameras, lighting, displays and wearable optics. However, retaining functionality while reducing device size has proven particularly challenging. For example, so far there has been no demonstration of broadband achromatic metalenses covering the entire visible spectrum. Here, we show that by judicious design of nanofins on a surface, it is possible to simultaneously control the phase, group delay and group delay dispersion of light, thereby achieving a transmissive achromatic metalens with large bandwidth. We demonstrate diffraction-limited achromatic focusing and achromatic imaging from 470 to 670 nm. Our metalens comprises only a single layer of nanostructures whose thickness is on the order of the wavelength, and does not involve spatial multiplexing or cascading. While this initial design (numerical aperture of 0.2) has an efficiency of about 20% at 500 nm, we discuss ways in which our approach may be further optimized to meet the demand of future applications. Controlling the geometry of each dielectric element of a nanostructured surface enables frequency-dependent group delay and group delay dispersion engineering, and the fabrication of an achromatic metalens for imaging in the visible in transmission.

1,126 citations

Journal ArticleDOI
TL;DR: Integrating the Pancharatnam–Berry phase with integrated resonant nanoantennas in a metalens design produces an achromatic device capable of full-colour imaging in the visible range in transmission mode.
Abstract: Metalenses consist of an array of optical nanoantennas on a surface capable of manipulating the properties of an incoming light wavefront. Various flat optical components, such as polarizers, optical imaging encoders, tunable phase modulators and a retroreflector, have been demonstrated using a metalens design. An open issue, especially problematic for colour imaging and display applications, is the correction of chromatic aberration, an intrinsic effect originating from the specific resonance and limited working bandwidth of each nanoantenna. As a result, no metalens has demonstrated full-colour imaging in the visible wavelength. Here, we show a design and fabrication that consists of GaN-based integrated-resonant unit elements to achieve an achromatic metalens operating in the entire visible region in transmission mode. The focal length of our metalenses remains unchanged as the incident wavelength is varied from 400 to 660 nm, demonstrating complete elimination of chromatic aberration at about 49% bandwidth of the central working wavelength. The average efficiency of a metalens with a numerical aperture of 0.106 is about 40% over the whole visible spectrum. We also show some examples of full-colour imaging based on this design. Integrating the Pancharatnam–Berry phase with integrated resonant nanoantennas in a metalens design produces an achromatic device capable of full-colour imaging in the visible range in transmission mode.

1,063 citations

Journal ArticleDOI
TL;DR: P polarization-insensitive, micron-thick, high-contrast transmitarray micro-lenses with focal spots as small as 0.57 λ are reported, thus enabling widespread adoption and a rigorous method for ultrathin lens design is discussed.
Abstract: Flat optical devices thinner than a wavelength promise to replace conventional free-space components for wavefront and polarization control. Transmissive flat lenses are particularly interesting for applications in imaging and on-chip optoelectronic integration. Several designs based on plasmonic metasurfaces, high-contrast transmitarrays and gratings have been recently implemented but have not provided a performance comparable to conventional curved lenses. Here we report polarization-insensitive, micron-thick, high-contrast transmitarray micro-lenses with focal spots as small as 0.57 λ. The measured focusing efficiency is up to 82%. A rigorous method for ultrathin lens design, and the trade-off between high efficiency and small spot size (or large numerical aperture) are discussed. The micro-lenses, composed of silicon nano-posts on glass, are fabricated in one lithographic step that could be performed with high-throughput photo or nanoimprint lithography, thus enabling widespread adoption.

930 citations

Journal ArticleDOI
TL;DR: In this article, a high-numerical-aperture lens is used to achieve light with longitudinal polarization, which has some intriguing possibilities for particle acceleration. But it is difficult to obtain longitudinal polarization.
Abstract: Light is often thought of in terms of radial polarization, but longitudinal polarization is also possible, and it has some intriguing possibilities for particle acceleration. Binary optics, combined with a high-numerical-aperture lens, is a potential route to achieving light with this unusual property.

799 citations


Network Information
Related Topics (5)
Photonic crystal
43.4K papers, 887K citations
89% related
Laser
353.1K papers, 4.3M citations
88% related
Optical fiber
167K papers, 1.8M citations
88% related
Plasmon
32.5K papers, 983.9K citations
87% related
Raman scattering
38.4K papers, 902.6K citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202383
2022186
2021208
2020260
2019291
2018309