Topic

# Numerical integration

About: Numerical integration is a research topic. Over the lifetime, 12301 publications have been published within this topic receiving 307723 citations. The topic is also known as: numerical quadrature.

##### Papers published on a yearly basis

##### Papers

More filters

••

TL;DR: In this paper, a numerical algorithm integrating the 3N Cartesian equations of motion of a system of N points subject to holonomic constraints is formulated, and the relations of constraint remain perfectly fulfilled at each step of the trajectory despite the approximate character of numerical integration.

18,394 citations

••

TL;DR: In this paper, a method for accurate and efficient local density functional calculations (LDF) on molecules is described and presented with results using fast convergent threedimensional numerical integrations to calculate the matrix elements occurring in the Ritz variation method.

Abstract: A method for accurate and efficient local density functional calculations (LDF) on molecules is described and presented with results The method, Dmol for short, uses fast convergent three‐dimensional numerical integrations to calculate the matrix elements occurring in the Ritz variation method The flexibility of the integration technique opens the way to use the most efficient variational basis sets A practical choice of numerical basis sets is shown with a built‐in capability to reach the LDF dissociation limit exactly Dmol includes also an efficient, exact approach for calculating the electrostatic potential Results on small molecules illustrate present accuracy and error properties of the method Computational effort for this method grows to leading order with the cube of the molecule size Except for the solution of an algebraic eigenvalue problem the method can be refined to quadratic growth for large molecules

8,673 citations

••

3,038 citations

•

01 Jan 1998

TL;DR: In this article, the authors present techniques from the numerical analysis and applied mathematics literatures and show how to use them in economic analyses, including linear equations, iterative methods, optimization, nonlinear equations, approximation methods, numerical integration and differentiation, and Monte Carlo methods.

Abstract: To harness the full power of computer technology, economists need to use a broad range of mathematical techniques. In this book, Kenneth Judd presents techniques from the numerical analysis and applied mathematics literatures and shows how to use them in economic analyses. The book is divided into five parts. Part I provides a general introduction. Part II presents basics from numerical analysis on R^n, including linear equations, iterative methods, optimization, nonlinear equations, approximation methods, numerical integration and differentiation, and Monte Carlo methods. Part III covers methods for dynamic problems, including finite difference methods, projection methods, and numerical dynamic programming. Part IV covers perturbation and asymptotic solution methods. Finally, Part V covers applications to dynamic equilibrium analysis, including solution methods for perfect foresight models and rational expectation models. A web site contains supplementary material including programs and answers to exercises.

2,880 citations