scispace - formally typeset
Search or ask a question

Showing papers on "Object (computer science) published in 2018"


Proceedings ArticleDOI
18 Jun 2018
TL;DR: In this paper, a new method for synthesizing high-resolution photo-realistic images from semantic label maps using conditional generative adversarial networks (conditional GANs) is presented.
Abstract: We present a new method for synthesizing high-resolution photo-realistic images from semantic label maps using conditional generative adversarial networks (conditional GANs). Conditional GANs have enabled a variety of applications, but the results are often limited to low-resolution and still far from realistic. In this work, we generate 2048 A— 1024 visually appealing results with a novel adversarial loss, as well as new multi-scale generator and discriminator architectures. Furthermore, we extend our framework to interactive visual manipulation with two additional features. First, we incorporate object instance segmentation information, which enables object manipulations such as removing/adding objects and changing the object category. Second, we propose a method to generate diverse results given the same input, allowing users to edit the object appearance interactively. Human opinion studies demonstrate that our method significantly outperforms existing methods, advancing both the quality and the resolution of deep image synthesis and editing.

3,457 citations


Book ChapterDOI
08 Sep 2018
TL;DR: CornerNet as mentioned in this paper detects an object bounding box as a pair of keypoints, the top-left corner and the bottom-right corner, using a single convolution neural network.
Abstract: We propose CornerNet, a new approach to object detection where we detect an object bounding box as a pair of keypoints, the top-left corner and the bottom-right corner, using a single convolution neural network. By detecting objects as paired keypoints, we eliminate the need for designing a set of anchor boxes commonly used in prior single-stage detectors. In addition to our novel formulation, we introduce corner pooling, a new type of pooling layer that helps the network better localize corners. Experiments show that CornerNet achieves a 42.1% AP on MS COCO, outperforming all existing one-stage detectors.

1,642 citations


Proceedings ArticleDOI
01 Oct 2018
TL;DR: This work presents AVOD, an Aggregate View Object Detection network for autonomous driving scenarios that uses LIDAR point clouds and RGB images to generate features that are shared by two subnetworks: a region proposal network (RPN) and a second stage detector network.
Abstract: We present AVOD, an Aggregate View Object Detection network for autonomous driving scenarios. The proposed neural network architecture uses LIDAR point clouds and RGB images to generate features that are shared by two subnetworks: a region proposal network (RPN) and a second stage detector network. The proposed RPN uses a novel architecture capable of performing multimodal feature fusion on high resolution feature maps to generate reliable 3D object proposals for multiple object classes in road scenes. Using these proposals, the second stage detection network performs accurate oriented 3D bounding box regression and category classification to predict the extents, orientation, and classification of objects in 3D space. Our proposed architecture is shown to produce state of the art results on the KITTI 3D object detection benchmark [1] while running in real time with a low memory footprint, making it a suitable candidate for deployment on autonomous vehicles. Code is available at

967 citations


Proceedings ArticleDOI
Han Hu1, Jiayuan Gu2, Zheng Zhang1, Jifeng Dai1, Yichen Wei1 
01 Jun 2018
TL;DR: In this article, the authors propose an object relation module to model relations between objects, which is shown effective on improving object recognition and duplicate removal steps in the modern object detection pipeline.
Abstract: Although it is well believed for years that modeling relations between objects would help object recognition, there has not been evidence that the idea is working in the deep learning era. All state-of-the-art object detection systems still rely on recognizing object instances individually, without exploiting their relations during learning. This work proposes an object relation module. It processes a set of objects simultaneously through interaction between their appearance feature and geometry, thus allowing modeling of their relations. It is lightweight and in-place. It does not require additional supervision and is easy to embed in existing networks. It is shown effective on improving object recognition and duplicate removal steps in the modern object detection pipeline. It verifies the efficacy of modeling object relations in CNN based detection. It gives rise to the first fully end-to-end object detector.

944 citations


Proceedings ArticleDOI
18 Jun 2018
TL;DR: This work introduces Similarity Group Proposal Network (SGPN), a simple and intuitive deep learning framework for 3D object instance segmentation on point clouds that uses a single network to predict point grouping proposals and a corresponding semantic class for each proposal.
Abstract: We introduce Similarity Group Proposal Network (SGPN), a simple and intuitive deep learning framework for 3D object instance segmentation on point clouds. SGPN uses a single network to predict point grouping proposals and a corresponding semantic class for each proposal, from which we can directly extract instance segmentation results. Important to the effectiveness of SGPN is its novel representation of 3D instance segmentation results in the form of a similarity matrix that indicates the similarity between each pair of points in embedded feature space, thus producing an accurate grouping proposal for each point. Experimental results on various 3D scenes show the effectiveness of our method on 3D instance segmentation, and we also evaluate the capability of SGPN to improve 3D object detection and semantic segmentation results. We also demonstrate its flexibility by seamlessly incorporating 2D CNN features into the framework to boost performance.

543 citations


Posted Content
TL;DR: This paper addresses the semantic segmentation task with a new context aggregation scheme named \emph{object context}, which focuses on enhancing the role of object information by using a dense relation matrix to serve as a surrogate for the binary relation matrix.
Abstract: In this paper, we address the semantic segmentation task with a new context aggregation scheme named \emph{object context}, which focuses on enhancing the role of object information. Motivated by the fact that the category of each pixel is inherited from the object it belongs to, we define the object context for each pixel as the set of pixels that belong to the same category as the given pixel in the image. We use a binary relation matrix to represent the relationship between all pixels, where the value one indicates the two selected pixels belong to the same category and zero otherwise. We propose to use a dense relation matrix to serve as a surrogate for the binary relation matrix. The dense relation matrix is capable to emphasize the contribution of object information as the relation scores tend to be larger on the object pixels than the other pixels. Considering that the dense relation matrix estimation requires quadratic computation overhead and memory consumption w.r.t. the input size, we propose an efficient interlaced sparse self-attention scheme to model the dense relations between any two of all pixels via the combination of two sparse relation matrices. To capture richer context information, we further combine our interlaced sparse self-attention scheme with the conventional multi-scale context schemes including pyramid pooling~\citep{zhao2017pyramid} and atrous spatial pyramid pooling~\citep{chen2018deeplab}. We empirically show the advantages of our approach with competitive performances on five challenging benchmarks including: Cityscapes, ADE20K, LIP, PASCAL-Context and COCO-Stuff

498 citations


Journal ArticleDOI
TL;DR: Open Images V4 as mentioned in this paper is a dataset of 9.2M images with unified annotations for image classification, object detection and visual relationship detection from Flickr without a predefined list of class names or tags.
Abstract: We present Open Images V4, a dataset of 9.2M images with unified annotations for image classification, object detection and visual relationship detection. The images have a Creative Commons Attribution license that allows to share and adapt the material, and they have been collected from Flickr without a predefined list of class names or tags, leading to natural class statistics and avoiding an initial design bias. Open Images V4 offers large scale across several dimensions: 30.1M image-level labels for 19.8k concepts, 15.4M bounding boxes for 600 object classes, and 375k visual relationship annotations involving 57 classes. For object detection in particular, we provide 15x more bounding boxes than the next largest datasets (15.4M boxes on 1.9M images). The images often show complex scenes with several objects (8 annotated objects per image on average). We annotated visual relationships between them, which support visual relationship detection, an emerging task that requires structured reasoning. We provide in-depth comprehensive statistics about the dataset, we validate the quality of the annotations, we study how the performance of several modern models evolves with increasing amounts of training data, and we demonstrate two applications made possible by having unified annotations of multiple types coexisting in the same images. We hope that the scale, quality, and variety of Open Images V4 will foster further research and innovation even beyond the areas of image classification, object detection, and visual relationship detection.

482 citations


Proceedings ArticleDOI
27 Mar 2018
TL;DR: A novel framework for image captioning that can produce natural language explicitly grounded in entities that object detectors find in the image is introduced and reaches state-of-the-art on both COCO and Flickr30k datasets.
Abstract: We introduce a novel framework for image captioning that can produce natural language explicitly grounded in entities that object detectors find in the image. Our approach reconciles classical slot filling approaches (that are generally better grounded in images) with modern neural captioning approaches (that are generally more natural sounding and accurate). Our approach first generates a sentence 'template' with slot locations explicitly tied to specific image regions. These slots are then filled in by visual concepts identified in the regions by object detectors. The entire architecture (sentence template generation and slot filling with object detectors) is end-to-end differentiable. We verify the effectiveness of our proposed model on different image captioning tasks. On standard image captioning and novel object captioning, our model reaches state-of-the-art on both COCO and Flickr30k datasets. We also demonstrate that our model has unique advantages when the train and test distributions of scene compositions - and hence language priors of associated captions - are different. Code has been made available at: https://github.com/jiasenlu/NeuralBabyTalk.

436 citations


Posted Content
TL;DR: Wang et al. as mentioned in this paper proposed a multi-level feature pyramid network (MLFPN) to construct more effective feature pyramids for detecting objects of different scales, which achieved state-of-the-art results among one-stage detectors.
Abstract: Feature pyramids are widely exploited by both the state-of-the-art one-stage object detectors (e.g., DSSD, RetinaNet, RefineDet) and the two-stage object detectors (e.g., Mask R-CNN, DetNet) to alleviate the problem arising from scale variation across object instances. Although these object detectors with feature pyramids achieve encouraging results, they have some limitations due to that they only simply construct the feature pyramid according to the inherent multi-scale, pyramidal architecture of the backbones which are actually designed for object classification task. Newly, in this work, we present a method called Multi-Level Feature Pyramid Network (MLFPN) to construct more effective feature pyramids for detecting objects of different scales. First, we fuse multi-level features (i.e. multiple layers) extracted by backbone as the base feature. Second, we feed the base feature into a block of alternating joint Thinned U-shape Modules and Feature Fusion Modules and exploit the decoder layers of each u-shape module as the features for detecting objects. Finally, we gather up the decoder layers with equivalent scales (sizes) to develop a feature pyramid for object detection, in which every feature map consists of the layers (features) from multiple levels. To evaluate the effectiveness of the proposed MLFPN, we design and train a powerful end-to-end one-stage object detector we call M2Det by integrating it into the architecture of SSD, which gets better detection performance than state-of-the-art one-stage detectors. Specifically, on MS-COCO benchmark, M2Det achieves AP of 41.0 at speed of 11.8 FPS with single-scale inference strategy and AP of 44.2 with multi-scale inference strategy, which is the new state-of-the-art results among one-stage detectors. The code will be made available on \url{this https URL.

432 citations


27 Sep 2018
TL;DR: This network is the first deep network trained only on synthetic data that is able to achieve state-of-the-art performance on 6-DoF object pose estimation and demonstrates a real-time system estimating object poses with sufficient accuracy for real-world semantic grasping of known household objects in clutter by a real robot.
Abstract: Using synthetic data for training deep neural networks for robotic manipulation holds the promise of an almost unlimited amount of pre-labeled training data, generated safely out of harm's way. One of the key challenges of synthetic data, to date, has been to bridge the so-called reality gap, so that networks trained on synthetic data operate correctly when exposed to real-world data. We explore the reality gap in the context of 6-DoF pose estimation of known objects from a single RGB image. We show that for this problem the reality gap can be successfully spanned by a simple combination of domain randomized and photorealistic data. Using synthetic data generated in this manner, we introduce a one-shot deep neural network that is able to perform competitively against a state-of-the-art network trained on a combination of real and synthetic data. To our knowledge, this is the first deep network trained only on synthetic data that is able to achieve state-of-the-art performance on 6-DoF object pose estimation. Our network also generalizes better to novel environments including extreme lighting conditions, for which we show qualitative results. Using this network we demonstrate a real-time system estimating object poses with sufficient accuracy for real-world semantic grasping of known household objects in clutter by a real robot.

430 citations


Proceedings ArticleDOI
18 Jun 2018
TL;DR: In this paper, a modulator is trained to manipulate the intermediate layers of the segmentation network given limited visual and spatial information of the target object, which achieves similar accuracy as fine-tuning.
Abstract: Video object segmentation targets segmenting a specific object throughout a video sequence when given only an annotated first frame. Recent deep learning based approaches find it effective to fine-tune a general-purpose segmentation model on the annotated frame using hundreds of iterations of gradient descent. Despite the high accuracy that these methods achieve, the fine-tuning process is inefficient and fails to meet the requirements of real world applications. We propose a novel approach that uses a single forward pass to adapt the segmentation model to the appearance of a specific object. Specifically, a second meta neural network named modulator is trained to manipulate the intermediate layers of the segmentation network given limited visual and spatial information of the target object. The experiments show that our approach is 70A— faster than fine-tuning approaches and achieves similar accuracy. Our model and code have been released at https://github.com/linjieyangsc/video_seg.

Book ChapterDOI
08 Sep 2018
TL;DR: New network architectures are designed that can be trained using the AVC task for these functionalities: for cross-modal retrieval, and for localizing the source of a sound in an image.
Abstract: In this paper our objectives are, first, networks that can embed audio and visual inputs into a common space that is suitable for cross-modal retrieval; and second, a network that can localize the object that sounds in an image, given the audio signal. We achieve both these objectives by training from unlabelled video using only audio-visual correspondence (AVC) as the objective function. This is a form of cross-modal self-supervision from video.

Proceedings ArticleDOI
18 Jun 2018
TL;DR: MaskLab as mentioned in this paper proposes MaskLab, which combines semantic and direction prediction for instance segmentation and foreground/background segmentation in a Faster-RCNN object detector and achieves state-of-the-art performance.
Abstract: In this work, we tackle the problem of instance segmentation, the task of simultaneously solving object detection and semantic segmentation. Towards this goal, we present a model, called MaskLab, which produces three outputs: box detection, semantic segmentation, and direction prediction. Building on top of the Faster-RCNN object detector, the predicted boxes provide accurate localization of object instances. Within each region of interest, MaskLab performs foreground/background segmentation by combining semantic and direction prediction. Semantic segmentation assists the model in distinguishing between objects of different semantic classes including background, while the direction prediction, estimating each pixel's direction towards its corresponding center, allows separating instances of the same semantic class. Moreover, we explore the effect of incorporating recent successful methods from both segmentation and detection (e.g., atrous convolution and hypercolumn). Our proposed model is evaluated on the COCO instance segmentation benchmark and shows comparable performance with other state-of-art models.

Journal ArticleDOI
TL;DR: In this article, a convolutional neural network (CNN) was employed to jointly regress to 3D bounding box coordinates and object pose for object detection and orientation estimation tasks.
Abstract: The goal of this paper is to perform 3D object detection in the context of autonomous driving. Our method aims at generating a set of high-quality 3D object proposals by exploiting stereo imagery. We formulate the problem as minimizing an energy function that encodes object size priors, placement of objects on the ground plane as well as several depth informed features that reason about free space, point cloud densities and distance to the ground. We then exploit a CNN on top of these proposals to perform object detection. In particular, we employ a convolutional neural net (CNN) that exploits context and depth information to jointly regress to 3D bounding box coordinates and object pose. Our experiments show significant performance gains over existing RGB and RGB-D object proposal methods on the challenging KITTI benchmark. When combined with the CNN, our approach outperforms all existing results in object detection and orientation estimation tasks for all three KITTI object classes. Furthermore, we experiment also with the setting where LIDAR information is available, and show that using both LIDAR and stereo leads to the best result.

Journal ArticleDOI
TL;DR: This work proposes an alternative paradigm which combines real and synthetic data for learning semantic instance segmentation and object detection models, and introduces a novel dataset of augmented urban driving scenes with 360 degree images that are used as environment maps to create realistic lighting and reflections on rendered objects.
Abstract: The success of deep learning in computer vision is based on the availability of large annotated datasets. To lower the need for hand labeled images, virtually rendered 3D worlds have recently gained popularity. Unfortunately, creating realistic 3D content is challenging on its own and requires significant human effort. In this work, we propose an alternative paradigm which combines real and synthetic data for learning semantic instance segmentation and object detection models. Exploiting the fact that not all aspects of the scene are equally important for this task, we propose to augment real-world imagery with virtual objects of the target category. Capturing real-world images at large scale is easy and cheap, and directly provides real background appearances without the need for creating complex 3D models of the environment. We present an efficient procedure to augment these images with virtual objects. In contrast to modeling complete 3D environments, our data augmentation approach requires only a few user interactions in combination with 3D models of the target object category. Leveraging our approach, we introduce a novel dataset of augmented urban driving scenes with 360 degree images that are used as environment maps to create realistic lighting and reflections on rendered objects. We analyze the significance of realistic object placement by comparing manual placement by humans to automatic methods based on semantic scene analysis. This allows us to create composite images which exhibit both realistic background appearance as well as a large number of complex object arrangements. Through an extensive set of experiments, we conclude the right set of parameters to produce augmented data which can maximally enhance the performance of instance segmentation models. Further, we demonstrate the utility of the proposed approach on training standard deep models for semantic instance segmentation and object detection of cars in outdoor driving scenarios. We test the models trained on our augmented data on the KITTI 2015 dataset, which we have annotated with pixel-accurate ground truth, and on the Cityscapes dataset. Our experiments demonstrate that the models trained on augmented imagery generalize better than those trained on fully synthetic data or models trained on limited amounts of annotated real data.

Proceedings ArticleDOI
18 Jun 2018
TL;DR: RotationNet as discussed by the authors takes multi-view images of an object as input and jointly estimates its pose and object category, which is useful in practical scenarios where only partial views are available.
Abstract: We propose a Convolutional Neural Network (CNN)-based model "RotationNet," which takes multi-view images of an object as input and jointly estimates its pose and object category. Unlike previous approaches that use known viewpoint labels for training, our method treats the viewpoint labels as latent variables, which are learned in an unsupervised manner during the training using an unaligned object dataset. RotationNet is designed to use only a partial set of multi-view images for inference, and this property makes it useful in practical scenarios where only partial views are available. Moreover, our pose alignment strategy enables one to obtain view-specific feature representations shared across classes, which is important to maintain high accuracy in both object categorization and pose estimation. Effectiveness of RotationNet is demonstrated by its superior performance to the state-of-the-art methods of 3D object classification on 10- and 40-class ModelNet datasets. We also show that RotationNet, even trained without known poses, achieves the state-of-the-art performance on an object pose estimation dataset.

Proceedings ArticleDOI
21 Mar 2018
TL;DR: In this article, the authors introduce a novel event-based feature representation together with a new machine learning architecture, which uses local memory units to efficiently leverage past temporal information and build a robust eventbased representation.
Abstract: Event-based cameras have recently drawn the attention of the Computer Vision community thanks to their advantages in terms of high temporal resolution, low power consumption and high dynamic range, compared to traditional frame-based cameras. These properties make event-based cameras an ideal choice for autonomous vehicles, robot navigation or UAV vision, among others. However, the accuracy of event-based object classification algorithms, which is of crucial importance for any reliable system working in real-world conditions, is still far behind their frame-based counterparts. Two main reasons for this performance gap are: 1. The lack of effective low-level representations and architectures for event-based object classification and 2. The absence of large real-world event-based datasets. In this paper we address both problems. First, we introduce a novel event-based feature representation together with a new machine learning architecture. Compared to previous approaches, we use local memory units to efficiently leverage past temporal information and build a robust event-based representation. Second, we release the first large real-world event-based dataset for object classification. We compare our method to the state-of-the-art with extensive experiments, showing better classification performance and real-time computation.

Proceedings ArticleDOI
18 Jun 2018
TL;DR: The proposed method supports different kinds of user input such as segmentation mask in the first frame (semi-supervised scenario), or a sparse set of clicked points (interactive scenario), and reaches comparable quality to competing methods with much less interaction.
Abstract: This paper tackles the problem of video object segmentation, given some user annotation which indicates the object of interest. The problem is formulated as pixel-wise retrieval in a learned embedding space: we embed pixels of the same object instance into the vicinity of each other, using a fully convolutional network trained by a modified triplet loss as the embedding model. Then the annotated pixels are set as reference and the rest of the pixels are classified using a nearest-neighbor approach. The proposed method supports different kinds of user input such as segmentation mask in the first frame (semi-supervised scenario), or a sparse set of clicked points (interactive scenario). In the semi-supervised scenario, we achieve results competitive with the state of the art but at a fraction of computation cost (275 milliseconds per frame). In the interactive scenario where the user is able to refine their input iteratively, the proposed method provides instant response to each input, and reaches comparable quality to competing methods with much less interaction.

Book ChapterDOI
08 Sep 2018
TL;DR: In this paper, a dynamic memory network is proposed to adapt the template to the target's appearance variations during tracking, where an LSTM is used as a memory controller, where the input is the search feature map and the outputs are the control signals for the reading and writing process of the memory block.
Abstract: Template-matching methods for visual tracking have gained popularity recently due to their comparable performance and fast speed. However, they lack effective ways to adapt to changes in the target object’s appearance, making their tracking accuracy still far from state-of-the-art. In this paper, we propose a dynamic memory network to adapt the template to the target’s appearance variations during tracking. An LSTM is used as a memory controller, where the input is the search feature map and the outputs are the control signals for the reading and writing process of the memory block. As the location of the target is at first unknown in the search feature map, an attention mechanism is applied to concentrate the LSTM input on the potential target. To prevent aggressive model adaptivity, we apply gated residual template learning to control the amount of retrieved memory that is used to combine with the initial template. Unlike tracking-by-detection methods where the object’s information is maintained by the weight parameters of neural networks, which requires expensive online fine-tuning to be adaptable, our tracker runs completely feed-forward and adapts to the target’s appearance changes by updating the external memory. Moreover, unlike other tracking methods where the model capacity is fixed after offline training – the capacity of our tracker can be easily enlarged as the memory requirements of a task increase, which is favorable for memorizing long-term object information. Extensive experiments on OTB and VOT demonstrates that our tracker MemTrack performs favorably against state-of-the-art tracking methods while retaining real-time speed of 50 fps.

Book ChapterDOI
08 Sep 2018
TL;DR: Complex-YOLO, a state of the art real-time 3D object detection network on point clouds only, is introduced and a specific Euler-Region-Proposal Network (E-RPN) is proposed to estimate the pose of the object by adding an imaginary and a real fraction to the regression network.
Abstract: Lidar based 3D object detection is inevitable for autonomous driving, because it directly links to environmental understanding and therefore builds the base for prediction and motion planning. The capacity of inferencing highly sparse 3D data in real-time is an ill-posed problem for lots of other application areas besides automated vehicles, e.g. augmented reality, personal robotics or industrial automation. We introduce Complex-YOLO, a state of the art real-time 3D object detection network on point clouds only. In this work, we describe a network that expands YOLOv2, a fast 2D standard object detector for RGB images, by a specific complex regression strategy to estimate multi-class 3D boxes in Cartesian space. Thus, we propose a specific Euler-Region-Proposal Network (E-RPN) to estimate the pose of the object by adding an imaginary and a real fraction to the regression network. This ends up in a closed complex space and avoids singularities, which occur by single angle estimations. The E-RPN supports to generalize well during training. Our experiments on the KITTI benchmark suite show that we outperform current leading methods for 3D object detection specifically in terms of efficiency. We achieve state of the art results for cars, pedestrians and cyclists by being more than five times faster than the fastest competitor. Further, our model is capable of estimating all eight KITTI-classes, including Vans, Trucks or sitting pedestrians simultaneously with high accuracy.

Proceedings ArticleDOI
01 Sep 2018
TL;DR: In this article, Mask-RCNN instance segmentation is used to initialise compact per-object Truncated Signed Distance Function (TSDF) reconstructions with object size-dependent resolutions and a novel 3D foreground mask.
Abstract: We propose an online object-level SLAM system which builds a persistent and accurate 3D graph map of arbitrary reconstructed objects. As an RGB-D camera browses a cluttered indoor scene, Mask-RCNN instance segmentations are used to initialise compact per-object Truncated Signed Distance Function (TSDF) reconstructions with object size-dependent resolutions and a novel 3D foreground mask. Reconstructed objects are stored in an optimisable 6DoF pose graph which is our only persistent map representation. Objects are incrementally refined via depth fusion, and are used for tracking, relocalisation and loop closure detection. Loop closures cause adjustments in the relative pose estimates of object instances, but no intra-object warping. Each object also carries semantic information which is refined over time and an existence probability to account for spurious instance predictions. We demonstrate our approach on a hand-held RGB-D sequence from a cluttered office scene with a large number and variety of object instances, highlighting how the system closes loops and makes good use of existing objects on repeated loops. We quantitatively evaluate the trajectory error of our system against a baseline approach on the RGB-D SLAM benchmark, and qualitatively compare reconstruction quality of discovered objects on the YCB video dataset. Performance evaluation shows our approach is highly memory efficient and runs online at 4-8Hz (excluding relocalisation) despite not being optimised at the software level.

Posted Content
TL;DR: State-of-the-art results have been obtained for both object detection and instance segmentation on the MSCOCO benchmark based on the DetNet~(4.8G FLOPs) backbone.
Abstract: Recent CNN based object detectors, no matter one-stage methods like YOLO, SSD, and RetinaNe or two-stage detectors like Faster R-CNN, R-FCN and FPN are usually trying to directly finetune from ImageNet pre-trained models designed for image classification. There has been little work discussing on the backbone feature extractor specifically designed for the object detection. More importantly, there are several differences between the tasks of image classification and object detection. 1. Recent object detectors like FPN and RetinaNet usually involve extra stages against the task of image classification to handle the objects with various scales. 2. Object detection not only needs to recognize the category of the object instances but also spatially locate the position. Large downsampling factor brings large valid receptive field, which is good for image classification but compromises the object location ability. Due to the gap between the image classification and object detection, we propose DetNet in this paper, which is a novel backbone network specifically designed for object detection. Moreover, DetNet includes the extra stages against traditional backbone network for image classification, while maintains high spatial resolution in deeper layers. Without any bells and whistles, state-of-the-art results have been obtained for both object detection and instance segmentation on the MSCOCO benchmark based on our DetNet~(4.8G FLOPs) backbone. The code will be released for the reproduction.

Proceedings ArticleDOI
01 Oct 2018
TL;DR: MaskFusion as discussed by the authors is a real-time object-aware, semantic and dynamic RGB-D SLAM system that goes beyond traditional systems which output a purely geometric map of a static scene.
Abstract: We present MaskFusion, a real-time, object-aware, semantic and dynamic RGB-D SLAM system that goes beyond traditional systems which output a purely geometric map of a static scene. MaskFusion recognizes, segments and assigns semantic class labels to different objects in the scene, while tracking and reconstructing them even when they move independently from the camera. As an RGB-D camera scans a cluttered scene, image-based instance-level semantic segmentation creates semantic object masks that enable realtime object recognition and the creation of an object-level representation for the world map. Unlike previous recognition-based SLAM systems, MaskFusion does not require known models of the objects it can recognize, and can deal with multiple independent motions. MaskFusion takes full advantage of using instance-level semantic segmentation to enable semantic labels to be fused into an object-aware map, unlike recent semantics enabled SLAM systems that perform voxel-level semantic segmentation. We show augmented-reality applications that demonstrate the unique features of the map output by MaskFusion: instance-aware, semantic and dynamic. Code will be made available.

Proceedings ArticleDOI
18 Jun 2018
TL;DR: Wang et al. as mentioned in this paper proposed a region-of-interest segmentation network to generate part masks based on the tracked bounding boxes of parts, and a similarity-based scoring function was adopted to refine these object parts by comparing them to the visual information in the first frame.
Abstract: Online video object segmentation is a challenging task as it entails to process the image sequence timely and accurately. To segment a target object through the video, numerous CNN-based methods have been developed by heavily finetuning on the object mask in the first frame, which is time-consuming for online applications. In this paper, we propose a fast and accurate video object segmentation algorithm that can immediately start the segmentation process once receiving the images. We first utilize a part-based tracking method to deal with challenging factors such as large deformation, occlusion, and cluttered background. Based on the tracked bounding boxes of parts, we construct a region-of-interest segmentation network to generate part masks. Finally, a similarity-based scoring function is adopted to refine these object parts by comparing them to the visual information in the first frame. Our method performs favorably against state-of-the-art algorithms in accuracy on the DAVIS benchmark dataset, while achieving much faster runtime performance.

Book ChapterDOI
Zeming Li1, Chao Peng, Gang Yu, Xiangyu Zhang, Yangdong Deng1, Jian Sun 
08 Sep 2018
TL;DR: DetNet is proposed, which is a novel backbone network specifically designed for object detection that includes the extra stages against traditional backbone network for image classification, while maintains high spatial resolution in deeper layers.
Abstract: Recent CNN based object detectors, either one-stage methods like YOLO, SSD, and RetinaNet, or two-stage detectors like Faster R-CNN, R-FCN and FPN, are usually trying to directly finetune from ImageNet pre-trained models designed for the task of image classification. However, there has been little work discussing the backbone feature extractor specifically designed for the task of object detection. More importantly, there are several differences between the tasks of image classification and object detection. (i) Recent object detectors like FPN and RetinaNet usually involve extra stages against the task of image classification to handle the objects with various scales. (ii) Object detection not only needs to recognize the category of the object instances but also spatially locate them. Large downsampling factors bring large valid receptive field, which is good for image classification, but compromises the object location ability. Due to the gap between the image classification and object detection, we propose DetNet in this paper, which is a novel backbone network specifically designed for object detection. Moreover, DetNet includes the extra stages against traditional backbone network for image classification, while maintains high spatial resolution in deeper layers. Without any bells and whistles, state-of-the-art results have been obtained for both object detection and instance segmentation on the MSCOCO benchmark based on our DetNet (4.8G FLOPs) backbone. Codes will be released (https://github.com/zengarden/DetNet).

Posted Content
TL;DR: A benchmark for 6D pose estimation of a rigid object from a single RGB-D input image shows that methods based on point-pair features currently perform best, outperforming template matching methods, learning-based methods and methodsbased on 3D local features.
Abstract: We propose a benchmark for 6D pose estimation of a rigid object from a single RGB-D input image. The training data consists of a texture-mapped 3D object model or images of the object in known 6D poses. The benchmark comprises of: i) eight datasets in a unified format that cover different practical scenarios, including two new datasets focusing on varying lighting conditions, ii) an evaluation methodology with a pose-error function that deals with pose ambiguities, iii) a comprehensive evaluation of 15 diverse recent methods that captures the status quo of the field, and iv) an online evaluation system that is open for continuous submission of new results. The evaluation shows that methods based on point-pair features currently perform best, outperforming template matching methods, learning-based methods and methods based on 3D local features. The project website is available at bop.felk.cvut.cz.

Proceedings ArticleDOI
21 May 2018
TL;DR: The experimental results on the public datasets show that the AffordanceNet outperforms recent state-of-the-art methods by a fair margin, while its end-to-end architecture allows the inference at the speed of 150ms per image.
Abstract: We propose AffordanceNet, a new deep learning approach to simultaneously detect multiple objects and their affordances from RGB images. Our AffordanceNet has two branches: an object detection branch to localize and classify the object, and an affordance detection branch to assign each pixel in the object to its most probable affordance label. The proposed framework employs three key components for effectively handling the multiclass problem in the affordance mask: a sequence of deconvolutional layers, a robust resizing strategy, and a multi-task loss function. The experimental results on the public datasets show that our AffordanceNet outperforms recent state-of-the-art methods by a fair margin, while its end-to-end architecture allows the inference at the speed of 150ms per image. This makes our AffordanceNet well suitable for real-time robotic applications. Furthermore, we demonstrate the effectiveness of AffordanceNet in different testing environments and in real robotic applications. The source code is available at https://github.com/nqanh/affordance-net.

Posted Content
TL;DR: The authors propose to generate a sentence template with slot locations explicitly tied to specific image regions, which are then filled in by visual concepts identified in the regions by object detectors, achieving state-of-the-art performance on both standard image captioning and novel object captioning.
Abstract: We introduce a novel framework for image captioning that can produce natural language explicitly grounded in entities that object detectors find in the image. Our approach reconciles classical slot filling approaches (that are generally better grounded in images) with modern neural captioning approaches (that are generally more natural sounding and accurate). Our approach first generates a sentence `template' with slot locations explicitly tied to specific image regions. These slots are then filled in by visual concepts identified in the regions by object detectors. The entire architecture (sentence template generation and slot filling with object detectors) is end-to-end differentiable. We verify the effectiveness of our proposed model on different image captioning tasks. On standard image captioning and novel object captioning, our model reaches state-of-the-art on both COCO and Flickr30k datasets. We also demonstrate that our model has unique advantages when the train and test distributions of scene compositions -- and hence language priors of associated captions -- are different. Code has been made available at: this https URL

Proceedings Article
01 Jan 2018
TL;DR: Zhang et al. as mentioned in this paper propose an instance-centric attention module that learns to dynamically highlight regions in an image conditioned on the appearance of each instance for detecting human-object interactions.
Abstract: Recent years have witnessed rapid progress in detecting and recognizing individual object instances. To understand the situation in a scene, however, computers need to recognize how humans interact with surrounding objects. In this paper, we tackle the challenging task of detecting human-object interactions (HOI). Our core idea is that the appearance of a person or an object instance contains informative cues on which relevant parts of an image to attend to for facilitating interaction prediction. To exploit these cues, we propose an instance-centric attention module that learns to dynamically highlight regions in an image conditioned on the appearance of each instance. Such an attention-based network allows us to selectively aggregate features relevant for recognizing HOIs. We validate the efficacy of the proposed network on the Verb in COCO and HICO-DET datasets and show that our approach compares favorably with the state-of-the-arts.

Proceedings ArticleDOI
18 Jun 2018
TL;DR: The A-ATT mechanism can circularly accumulate the attention for useful information in image, query, and objects, while the noises are ignored gradually and the experimental results show the superiority of the proposed method in term of accuracy.
Abstract: Visual Grounding (VG) aims to locate the most relevant object or region in an image, based on a natural language query. The query can be a phrase, a sentence or even a multi-round dialogue. There are three main challenges in VG: 1) what is the main focus in a query; 2) how to understand an image; 3) how to locate an object. Most existing methods combine all the information curtly, which may suffer from the problem of information redundancy (i.e. ambiguous query, complicated image and a large number of objects). In this paper, we formulate these challenges as three attention problems and propose an accumulated attention (A-ATT) mechanism to reason among them jointly. Our A-ATT mechanism can circularly accumulate the attention for useful information in image, query, and objects, while the noises are ignored gradually. We evaluate the performance of A-ATT on four popular datasets (namely Refer-COCO, ReferCOCO+, ReferCOCOg, and Guesswhat?!), and the experimental results show the superiority of the proposed method in term of accuracy.