scispace - formally typeset
Search or ask a question

Showing papers on "Object detection published in 2017"


Journal ArticleDOI
TL;DR: This work introduces a Region Proposal Network (RPN) that shares full-image convolutional features with the detection network, thus enabling nearly cost-free region proposals and further merge RPN and Fast R-CNN into a single network by sharing their convolutionAL features.
Abstract: State-of-the-art object detection networks depend on region proposal algorithms to hypothesize object locations. Advances like SPPnet [1] and Fast R-CNN [2] have reduced the running time of these detection networks, exposing region proposal computation as a bottleneck. In this work, we introduce a Region Proposal Network (RPN) that shares full-image convolutional features with the detection network, thus enabling nearly cost-free region proposals. An RPN is a fully convolutional network that simultaneously predicts object bounds and objectness scores at each position. The RPN is trained end-to-end to generate high-quality region proposals, which are used by Fast R-CNN for detection. We further merge RPN and Fast R-CNN into a single network by sharing their convolutional features—using the recently popular terminology of neural networks with ’attention’ mechanisms, the RPN component tells the unified network where to look. For the very deep VGG-16 model [3] , our detection system has a frame rate of 5 fps ( including all steps ) on a GPU, while achieving state-of-the-art object detection accuracy on PASCAL VOC 2007, 2012, and MS COCO datasets with only 300 proposals per image. In ILSVRC and COCO 2015 competitions, Faster R-CNN and RPN are the foundations of the 1st-place winning entries in several tracks. Code has been made publicly available.

26,458 citations


Proceedings ArticleDOI
21 Jul 2017
TL;DR: This paper exploits the inherent multi-scale, pyramidal hierarchy of deep convolutional networks to construct feature pyramids with marginal extra cost and achieves state-of-the-art single-model results on the COCO detection benchmark without bells and whistles.
Abstract: Feature pyramids are a basic component in recognition systems for detecting objects at different scales. But pyramid representations have been avoided in recent object detectors that are based on deep convolutional networks, partially because they are slow to compute and memory intensive. In this paper, we exploit the inherent multi-scale, pyramidal hierarchy of deep convolutional networks to construct feature pyramids with marginal extra cost. A top-down architecture with lateral connections is developed for building high-level semantic feature maps at all scales. This architecture, called a Feature Pyramid Network (FPN), shows significant improvement as a generic feature extractor in several applications. Using a basic Faster R-CNN system, our method achieves state-of-the-art single-model results on the COCO detection benchmark without bells and whistles, surpassing all existing single-model entries including those from the COCO 2016 challenge winners. In addition, our method can run at 5 FPS on a GPU and thus is a practical and accurate solution to multi-scale object detection. Code will be made publicly available.

16,727 citations


Posted Content
TL;DR: This work introduces two simple global hyper-parameters that efficiently trade off between latency and accuracy and demonstrates the effectiveness of MobileNets across a wide range of applications and use cases including object detection, finegrain classification, face attributes and large scale geo-localization.
Abstract: We present a class of efficient models called MobileNets for mobile and embedded vision applications. MobileNets are based on a streamlined architecture that uses depth-wise separable convolutions to build light weight deep neural networks. We introduce two simple global hyper-parameters that efficiently trade off between latency and accuracy. These hyper-parameters allow the model builder to choose the right sized model for their application based on the constraints of the problem. We present extensive experiments on resource and accuracy tradeoffs and show strong performance compared to other popular models on ImageNet classification. We then demonstrate the effectiveness of MobileNets across a wide range of applications and use cases including object detection, finegrain classification, face attributes and large scale geo-localization.

14,406 citations


Proceedings ArticleDOI
20 Mar 2017
TL;DR: This work presents a conceptually simple, flexible, and general framework for object instance segmentation, which extends Faster R-CNN by adding a branch for predicting an object mask in parallel with the existing branch for bounding box recognition.
Abstract: We present a conceptually simple, flexible, and general framework for object instance segmentation. Our approach efficiently detects objects in an image while simultaneously generating a high-quality segmentation mask for each instance. The method, called Mask R-CNN, extends Faster R-CNN by adding a branch for predicting an object mask in parallel with the existing branch for bounding box recognition. Mask R-CNN is simple to train and adds only a small overhead to Faster R-CNN, running at 5 fps. Moreover, Mask R-CNN is easy to generalize to other tasks, e.g., allowing us to estimate human poses in the same framework. We show top results in all three tracks of the COCO suite of challenges, including instance segmentation, bounding-box object detection, and person keypoint detection. Without tricks, Mask R-CNN outperforms all existing, single-model entries on every task, including the COCO 2016 challenge winners. We hope our simple and effective approach will serve as a solid baseline and help ease future research in instance-level recognition. Code will be made available.

14,299 citations


Proceedings ArticleDOI
Tsung-Yi Lin1, Priya Goyal2, Ross Girshick2, Kaiming He2, Piotr Dollár2 
07 Aug 2017
TL;DR: This paper proposes to address the extreme foreground-background class imbalance encountered during training of dense detectors by reshaping the standard cross entropy loss such that it down-weights the loss assigned to well-classified examples, and develops a novel Focal Loss, which focuses training on a sparse set of hard examples and prevents the vast number of easy negatives from overwhelming the detector during training.
Abstract: The highest accuracy object detectors to date are based on a two-stage approach popularized by R-CNN, where a classifier is applied to a sparse set of candidate object locations. In contrast, one-stage detectors that are applied over a regular, dense sampling of possible object locations have the potential to be faster and simpler, but have trailed the accuracy of two-stage detectors thus far. In this paper, we investigate why this is the case. We discover that the extreme foreground-background class imbalance encountered during training of dense detectors is the central cause. We propose to address this class imbalance by reshaping the standard cross entropy loss such that it down-weights the loss assigned to well-classified examples. Our novel Focal Loss focuses training on a sparse set of hard examples and prevents the vast number of easy negatives from overwhelming the detector during training. To evaluate the effectiveness of our loss, we design and train a simple dense detector we call RetinaNet. Our results show that when trained with the focal loss, RetinaNet is able to match the speed of previous one-stage detectors while surpassing the accuracy of all existing state-of-the-art two-stage detectors.

12,161 citations


Proceedings Article
20 Mar 2017
TL;DR: This work presents a conceptually simple, flexible, and general framework for object instance segmentation that outperforms all existing, single-model entries on every task, including the COCO 2016 challenge winners.
Abstract: We present a conceptually simple, flexible, and general framework for object instance segmentation. Our approach efficiently detects objects in an image while simultaneously generating a high-quality segmentation mask for each instance. The method, called Mask R-CNN, extends Faster R-CNN by adding a branch for predicting an object mask in parallel with the existing branch for bounding box recognition. Mask R-CNN is simple to train and adds only a small overhead to Faster R-CNN, running at 5 fps. Moreover, Mask R-CNN is easy to generalize to other tasks, e.g., allowing us to estimate human poses in the same framework. We show top results in all three tracks of the COCO suite of challenges, including instance segmentation, bounding-box object detection, and person keypoint detection. Without bells and whistles, Mask R-CNN outperforms all existing, single-model entries on every task, including the COCO 2016 challenge winners. We hope our simple and effective approach will serve as a solid baseline and help ease future research in instance-level recognition. Code has been made available at: this https URL

11,343 citations


Proceedings ArticleDOI
21 Jul 2017
TL;DR: YOLO9000 as discussed by the authors is a state-of-the-art real-time object detection system that can detect over 9000 object categories in real time using a novel multi-scale training method, offering an easy tradeoff between speed and accuracy.
Abstract: We introduce YOLO9000, a state-of-the-art, real-time object detection system that can detect over 9000 object categories. First we propose various improvements to the YOLO detection method, both novel and drawn from prior work. The improved model, YOLOv2, is state-of-the-art on standard detection tasks like PASCAL VOC and COCO. Using a novel, multi-scale training method the same YOLOv2 model can run at varying sizes, offering an easy tradeoff between speed and accuracy. At 67 FPS, YOLOv2 gets 76.8 mAP on VOC 2007. At 40 FPS, YOLOv2 gets 78.6 mAP, outperforming state-of-the-art methods like Faster RCNN with ResNet and SSD while still running significantly faster. Finally we propose a method to jointly train on object detection and classification. Using this method we train YOLO9000 simultaneously on the COCO detection dataset and the ImageNet classification dataset. Our joint training allows YOLO9000 to predict detections for object classes that dont have labelled detection data. We validate our approach on the ImageNet detection task. YOLO9000 gets 19.7 mAP on the ImageNet detection validation set despite only having detection data for 44 of the 200 classes. On the 156 classes not in COCO, YOLO9000 gets 16.0 mAP. YOLO9000 predicts detections for more than 9000 different object categories, all in real-time.

9,132 citations


Posted Content
Tsung-Yi Lin1, Priya Goyal1, Ross Girshick1, Kaiming He1, Piotr Dollár1 
TL;DR: This paper proposes to address the extreme foreground-background class imbalance encountered during training of dense detectors by reshaping the standard cross entropy loss such that it down-weights the loss assigned to well-classified examples, and develops a novel Focal Loss, which focuses training on a sparse set of hard examples and prevents the vast number of easy negatives from overwhelming the detector during training.
Abstract: The highest accuracy object detectors to date are based on a two-stage approach popularized by R-CNN, where a classifier is applied to a sparse set of candidate object locations. In contrast, one-stage detectors that are applied over a regular, dense sampling of possible object locations have the potential to be faster and simpler, but have trailed the accuracy of two-stage detectors thus far. In this paper, we investigate why this is the case. We discover that the extreme foreground-background class imbalance encountered during training of dense detectors is the central cause. We propose to address this class imbalance by reshaping the standard cross entropy loss such that it down-weights the loss assigned to well-classified examples. Our novel Focal Loss focuses training on a sparse set of hard examples and prevents the vast number of easy negatives from overwhelming the detector during training. To evaluate the effectiveness of our loss, we design and train a simple dense detector we call RetinaNet. Our results show that when trained with the focal loss, RetinaNet is able to match the speed of previous one-stage detectors while surpassing the accuracy of all existing state-of-the-art two-stage detectors. Code is at: this https URL.

7,715 citations


Proceedings ArticleDOI
Xiaozhi Chen1, Huimin Ma1, Ji Wan2, Bo Li2, Xia Tian2 
21 Jul 2017
TL;DR: This paper proposes Multi-View 3D networks (MV3D), a sensory-fusion framework that takes both LIDAR point cloud and RGB images as input and predicts oriented 3D bounding boxes and designs a deep fusion scheme to combine region-wise features from multiple views and enable interactions between intermediate layers of different paths.
Abstract: This paper aims at high-accuracy 3D object detection in autonomous driving scenario. We propose Multi-View 3D networks (MV3D), a sensory-fusion framework that takes both LIDAR point cloud and RGB images as input and predicts oriented 3D bounding boxes. We encode the sparse 3D point cloud with a compact multi-view representation. The network is composed of two subnetworks: one for 3D object proposal generation and another for multi-view feature fusion. The proposal network generates 3D candidate boxes efficiently from the birds eye view representation of 3D point cloud. We design a deep fusion scheme to combine region-wise features from multiple views and enable interactions between intermediate layers of different paths. Experiments on the challenging KITTI benchmark show that our approach outperforms the state-of-the-art by around 25% and 30% AP on the tasks of 3D localization and 3D detection. In addition, for 2D detection, our approach obtains 14.9% higher AP than the state-of-the-art on the hard data among the LIDAR-based methods.

2,569 citations


Proceedings ArticleDOI
21 Jul 2017
TL;DR: A unified implementation of the Faster R-CNN, R-FCN and SSD systems is presented and the speed/accuracy trade-off curve created by using alternative feature extractors and varying other critical parameters such as image size within each of these meta-architectures is traced out.
Abstract: The goal of this paper is to serve as a guide for selecting a detection architecture that achieves the right speed/memory/accuracy balance for a given application and platform. To this end, we investigate various ways to trade accuracy for speed and memory usage in modern convolutional object detection systems. A number of successful systems have been proposed in recent years, but apples-toapples comparisons are difficult due to different base feature extractors (e.g., VGG, Residual Networks), different default image resolutions, as well as different hardware and software platforms. We present a unified implementation of the Faster R-CNN [30], R-FCN [6] and SSD [25] systems, which we view as meta-architectures and trace out the speed/accuracy trade-off curve created by using alternative feature extractors and varying other critical parameters such as image size within each of these meta-architectures. On one extreme end of this spectrum where speed and memory are critical, we present a detector that achieves real time speeds and can be deployed on a mobile device. On the opposite end in which accuracy is critical, we present a detector that achieves state-of-the-art performance measured on the COCO detection task.

2,484 citations


Proceedings ArticleDOI
10 Jul 2017
TL;DR: In this paper, the authors investigated how the performance of current vision tasks would change if this data was used for representation learning and found that the performance on vision tasks increases logarithmically based on volume of training data size.
Abstract: The success of deep learning in vision can be attributed to: (a) models with high capacity; (b) increased computational power; and (c) availability of large-scale labeled data. Since 2012, there have been significant advances in representation capabilities of the models and computational capabilities of GPUs. But the size of the biggest dataset has surprisingly remained constant. What will happen if we increase the dataset size by 10 × or 100 × ? This paper takes a step towards clearing the clouds of mystery surrounding the relationship between ‘enormous data’ and visual deep learning. By exploiting the JFT-300M dataset which has more than 375M noisy labels for 300M images, we investigate how the performance of current vision tasks would change if this data was used for representation learning. Our paper delivers some surprising (and some expected) findings. First, we find that the performance on vision tasks increases logarithmically based on volume of training data size. Second, we show that representation learning (or pre-training) still holds a lot of promise. One can improve performance on many vision tasks by just training a better base model. Finally, as expected, we present new state-of-the-art results for different vision tasks including image classification, object detection, semantic segmentation and human pose estimation. Our sincere hope is that this inspires vision community to not undervalue the data and develop collective efforts in building larger datasets.

Posted Content
TL;DR: This work introduces two new modules to enhance the transformation modeling capability of CNNs, namely, deformable convolution and deformable RoI pooling, based on the idea of augmenting the spatial sampling locations in the modules with additional offsets and learning the offsets from the target tasks, without additional supervision.
Abstract: Convolutional neural networks (CNNs) are inherently limited to model geometric transformations due to the fixed geometric structures in its building modules. In this work, we introduce two new modules to enhance the transformation modeling capacity of CNNs, namely, deformable convolution and deformable RoI pooling. Both are based on the idea of augmenting the spatial sampling locations in the modules with additional offsets and learning the offsets from target tasks, without additional supervision. The new modules can readily replace their plain counterparts in existing CNNs and can be easily trained end-to-end by standard back-propagation, giving rise to deformable convolutional networks. Extensive experiments validate the effectiveness of our approach on sophisticated vision tasks of object detection and semantic segmentation. The code would be released.

Proceedings ArticleDOI
21 Jul 2017
TL;DR: In this article, a unified framework allowing to generalize CNN architectures to non-Euclidean domains (graphs and manifolds) and learn local, stationary, and compositional task-specific features is proposed.
Abstract: Deep learning has achieved a remarkable performance breakthrough in several fields, most notably in speech recognition, natural language processing, and computer vision. In particular, convolutional neural network (CNN) architectures currently produce state-of-the-art performance on a variety of image analysis tasks such as object detection and recognition. Most of deep learning research has so far focused on dealing with 1D, 2D, or 3D Euclidean-structured data such as acoustic signals, images, or videos. Recently, there has been an increasing interest in geometric deep learning, attempting to generalize deep learning methods to non-Euclidean structured data such as graphs and manifolds, with a variety of applications from the domains of network analysis, computational social science, or computer graphics. In this paper, we propose a unified framework allowing to generalize CNN architectures to non-Euclidean domains (graphs and manifolds) and learn local, stationary, and compositional task-specific features. We show that various non-Euclidean CNN methods previously proposed in the literature can be considered as particular instances of our framework. We test the proposed method on standard tasks from the realms of image-, graph-and 3D shape analysis and show that it consistently outperforms previous approaches.

Posted Content
TL;DR: This paper combines a state-of-the-art classifier with a fast detection framework and augments SSD+Residual-101 with deconvolution layers to introduce additional large-scale context in object detection and improve accuracy, especially for small objects.
Abstract: The main contribution of this paper is an approach for introducing additional context into state-of-the-art general object detection. To achieve this we first combine a state-of-the-art classifier (Residual-101[14]) with a fast detection framework (SSD[18]). We then augment SSD+Residual-101 with deconvolution layers to introduce additional large-scale context in object detection and improve accuracy, especially for small objects, calling our resulting system DSSD for deconvolutional single shot detector. While these two contributions are easily described at a high-level, a naive implementation does not succeed. Instead we show that carefully adding additional stages of learned transformations, specifically a module for feed-forward connections in deconvolution and a new output module, enables this new approach and forms a potential way forward for further detection research. Results are shown on both PASCAL VOC and COCO detection. Our DSSD with $513 \times 513$ input achieves 81.5% mAP on VOC2007 test, 80.0% mAP on VOC2012 test, and 33.2% mAP on COCO, outperforming a state-of-the-art method R-FCN[3] on each dataset.

Posted Content
TL;DR: In training, Random Erasing randomly selects a rectangle region in an image and erases its pixels with random values and yields consistent improvement over strong baselines in image classification, object detection and person re-identification.
Abstract: In this paper, we introduce Random Erasing, a new data augmentation method for training the convolutional neural network (CNN). In training, Random Erasing randomly selects a rectangle region in an image and erases its pixels with random values. In this process, training images with various levels of occlusion are generated, which reduces the risk of over-fitting and makes the model robust to occlusion. Random Erasing is parameter learning free, easy to implement, and can be integrated with most of the CNN-based recognition models. Albeit simple, Random Erasing is complementary to commonly used data augmentation techniques such as random cropping and flipping, and yields consistent improvement over strong baselines in image classification, object detection and person re-identification. Code is available at: this https URL.

Proceedings ArticleDOI
01 Oct 2017
TL;DR: Soft-NMS as mentioned in this paper decays the detection scores of all other objects as a continuous function of their overlap with M. As per the design of the algorithm, if an object lies within the predefined overlap threshold, it leads to a miss.
Abstract: Non-maximum suppression is an integral part of the object detection pipeline. First, it sorts all detection boxes on the basis of their scores. The detection box M with the maximum score is selected and all other detection boxes with a significant overlap (using a pre-defined threshold) with M are suppressed. This process is recursively applied on the remaining boxes. As per the design of the algorithm, if an object lies within the predefined overlap threshold, it leads to a miss. To this end, we propose Soft-NMS, an algorithm which decays the detection scores of all other objects as a continuous function of their overlap with M. Hence, no object is eliminated in this process. Soft-NMS obtains consistent improvements for the coco-style mAP metric on standard datasets like PASCAL VOC2007 (1.7% for both R-FCN and Faster-RCNN) and MS-COCO (1.3% for R-FCN and 1.1% for Faster-RCNN) by just changing the NMS algorithm without any additional hyper-parameters. Using Deformable-RFCN, Soft-NMS improves state-of-the-art in object detection from 39.8% to 40.9% with a single model. Further, the computational complexity of Soft-NMS is the same as traditional NMS and hence it can be efficiently implemented. Since Soft-NMS does not require any extra training and is simple to implement, it can be easily integrated into any object detection pipeline. Code for Soft-NMS is publicly available on GitHub http://bit.ly/2nJLNMu.

Proceedings ArticleDOI
01 Oct 2017
TL;DR: An image dehazing model built with a convolutional neural network (CNN) based on a re-formulated atmospheric scattering model, called All-in-One Dehazing Network (AOD-Net), which demonstrates superior performance than the state-of-the-art in terms of PSNR, SSIM and the subjective visual quality.
Abstract: This paper proposes an image dehazing model built with a convolutional neural network (CNN), called All-in-One Dehazing Network (AOD-Net). It is designed based on a re-formulated atmospheric scattering model. Instead of estimating the transmission matrix and the atmospheric light separately as most previous models did, AOD-Net directly generates the clean image through a light-weight CNN. Such a novel end-to-end design makes it easy to embed AOD-Net into other deep models, e.g., Faster R-CNN, for improving high-level tasks on hazy images. Experimental results on both synthesized and natural hazy image datasets demonstrate our superior performance than the state-of-the-art in terms of PSNR, SSIM and the subjective visual quality. Furthermore, when concatenating AOD-Net with Faster R-CNN, we witness a large improvement of the object detection performance on hazy images.

Posted Content
Yin Zhou1, Oncel Tuzel1
TL;DR: VoxelNet is proposed, a generic 3D detection network that unifies feature extraction and bounding box prediction into a single stage, end-to-end trainable deep network and learns an effective discriminative representation of objects with various geometries, leading to encouraging results in3D detection of pedestrians and cyclists.
Abstract: Accurate detection of objects in 3D point clouds is a central problem in many applications, such as autonomous navigation, housekeeping robots, and augmented/virtual reality. To interface a highly sparse LiDAR point cloud with a region proposal network (RPN), most existing efforts have focused on hand-crafted feature representations, for example, a bird's eye view projection. In this work, we remove the need of manual feature engineering for 3D point clouds and propose VoxelNet, a generic 3D detection network that unifies feature extraction and bounding box prediction into a single stage, end-to-end trainable deep network. Specifically, VoxelNet divides a point cloud into equally spaced 3D voxels and transforms a group of points within each voxel into a unified feature representation through the newly introduced voxel feature encoding (VFE) layer. In this way, the point cloud is encoded as a descriptive volumetric representation, which is then connected to a RPN to generate detections. Experiments on the KITTI car detection benchmark show that VoxelNet outperforms the state-of-the-art LiDAR based 3D detection methods by a large margin. Furthermore, our network learns an effective discriminative representation of objects with various geometries, leading to encouraging results in 3D detection of pedestrians and cyclists, based on only LiDAR.

Proceedings ArticleDOI
21 Jul 2017
TL;DR: This paper develops a weakly supervised learning method for saliency detection using image-level tags only, which outperforms unsupervised ones with a large margin, and achieves comparable or even superior performance than fully supervised counterparts.
Abstract: Deep Neural Networks (DNNs) have substantially improved the state-of-the-art in salient object detection. However, training DNNs requires costly pixel-level annotations. In this paper, we leverage the observation that image-level tags provide important cues of foreground salient objects, and develop a weakly supervised learning method for saliency detection using image-level tags only. The Foreground Inference Network (FIN) is introduced for this challenging task. In the first stage of our training method, FIN is jointly trained with a fully convolutional network (FCN) for image-level tag prediction. A global smooth pooling layer is proposed, enabling FCN to assign object category tags to corresponding object regions, while FIN is capable of capturing all potential foreground regions with the predicted saliency maps. In the second stage, FIN is fine-tuned with its predicted saliency maps as ground truth. For refinement of ground truth, an iterative Conditional Random Field is developed to enforce spatial label consistency and further boost performance. Our method alleviates annotation efforts and allows the usage of existing large scale training sets with image-level tags. Our model runs at 60 FPS, outperforms unsupervised ones with a large margin, and achieves comparable or even superior performance than fully supervised counterparts.

Proceedings ArticleDOI
01 Oct 2017
TL;DR: In this paper, a novel method for detecting 3D model instances and estimating their 6D pose from RGB data in a single shot is presented, which outperforms state-of-the-art methods that leverage RGBD data on multiple challenging datasets.
Abstract: We present a novel method for detecting 3D model instances and estimating their 6D poses from RGB data in a single shot. To this end, we extend the popular SSD paradigm to cover the full 6D pose space and train on synthetic model data only. Our approach competes or surpasses current state-of-the-art methods that leverage RGBD data on multiple challenging datasets. Furthermore, our method produces these results at around 10Hz, which is many times faster than the related methods. For the sake of reproducibility, we make our trained networks and detection code publicly available.

Proceedings ArticleDOI
01 Jul 2017
TL;DR: A class of temporal models that use a hierarchy of temporal convolutions to perform fine-grained action segmentation or detection, which are capable of capturing action compositions, segment durations, and long-range dependencies, and are over a magnitude faster to train than competing LSTM-based Recurrent Neural Networks.
Abstract: The ability to identify and temporally segment fine-grained human actions throughout a video is crucial for robotics, surveillance, education, and beyond. Typical approaches decouple this problem by first extracting local spatiotemporal features from video frames and then feeding them into a temporal classifier that captures high-level temporal patterns. We describe a class of temporal models, which we call Temporal Convolutional Networks (TCNs), that use a hierarchy of temporal convolutions to perform fine-grained action segmentation or detection. Our Encoder-Decoder TCN uses pooling and upsampling to efficiently capture long-range temporal patterns whereas our Dilated TCN uses dilated convolutions. We show that TCNs are capable of capturing action compositions, segment durations, and long-range dependencies, and are over a magnitude faster to train than competing LSTM-based Recurrent Neural Networks. We apply these models to three challenging fine-grained datasets and show large improvements over the state of the art.

Proceedings ArticleDOI
01 Jul 2017
TL;DR: This paper proposes a new salient object detection method by introducing short connections to the skip-layer structures within the HED architecture, which takes full advantage of multi-level and multi-scale features extracted from FCNs, providing more advanced representations at each layer, a property that is critically needed to perform segment detection.
Abstract: Recent progress on saliency detection is substantial, benefiting mostly from the explosive development of Convolutional Neural Networks (CNNs). Semantic segmentation and saliency detection algorithms developed lately have been mostly based on Fully Convolutional Neural Networks (FCNs). There is still a large room for improvement over the generic FCN models that do not explicitly deal with the scale-space problem. Holisitcally-Nested Edge Detector (HED) provides a skip-layer structure with deep supervision for edge and boundary detection, but the performance gain of HED on saliency detection is not obvious. In this paper, we propose a new saliency method by introducing short connections to the skip-layer structures within the HED architecture. Our framework provides rich multi-scale feature maps at each layer, a property that is critically needed to perform segment detection. Our method produces state-of-the-art results on 5 widely tested salient object detection benchmarks, with advantages in terms of efficiency (0.08 seconds per image), effectiveness, and simplicity over the existing algorithms.

Journal ArticleDOI
TL;DR: A head‐to‐head comparison between a state‐of‐the art in mammography CAD system, relying on a manually designed feature set and a Convolutional Neural Network (CNN), aiming for a system that can ultimately read mammograms independently.

Proceedings ArticleDOI
01 Jul 2017
TL;DR: In this paper, a hybrid discrete-continuous loss is proposed to estimate 3D bounding box dimensions and geometric constraints provided by a 2D object bounding boxes. But this method requires a large amount of training data and is computationally expensive.
Abstract: We present a method for 3D object detection and pose estimation from a single image. In contrast to current techniques that only regress the 3D orientation of an object, our method first regresses relatively stable 3D object properties using a deep convolutional neural network and then combines these estimates with geometric constraints provided by a 2D object bounding box to produce a complete 3D bounding box. The first network output estimates the 3D object orientation using a novel hybrid discrete-continuous loss, which significantly outperforms the L2 loss. The second output regresses the 3D object dimensions, which have relatively little variance compared to alternatives and can often be predicted for many object types. These estimates, combined with the geometric constraints on translation imposed by the 2D bounding box, enable us to recover a stable and accurate 3D object pose. We evaluate our method on the challenging KITTI object detection benchmark [2] both on the official metric of 3D orientation estimation and also on the accuracy of the obtained 3D bounding boxes. Although conceptually simple, our method outperforms more complex and computationally expensive approaches that leverage semantic segmentation, instance level segmentation and flat ground priors [4] and sub-category detection [23][24]. Our discrete-continuous loss also produces state of the art results for 3D viewpoint estimation on the Pascal 3D+ dataset[26].

Proceedings ArticleDOI
01 Oct 2017
TL;DR: This paper proposes dynamic Siamese network, via a fast transformation learning model that enables effective online learning of target appearance variation and background suppression from previous frames, and presents elementwise multi-layer fusion to adaptively integrate the network outputs using multi-level deep features.
Abstract: How to effectively learn temporal variation of target appearance, to exclude the interference of cluttered background, while maintaining real-time response, is an essential problem of visual object tracking. Recently, Siamese networks have shown great potentials of matching based trackers in achieving balanced accuracy and beyond realtime speed. However, they still have a big gap to classification & updating based trackers in tolerating the temporal changes of objects and imaging conditions. In this paper, we propose dynamic Siamese network, via a fast transformation learning model that enables effective online learning of target appearance variation and background suppression from previous frames. We then present elementwise multi-layer fusion to adaptively integrate the network outputs using multi-level deep features. Unlike state-of-theart trackers, our approach allows the usage of any feasible generally- or particularly-trained features, such as SiamFC and VGG. More importantly, the proposed dynamic Siamese network can be jointly trained as a whole directly on the labeled video sequences, thus can take full advantage of the rich spatial temporal information of moving objects. As a result, our approach achieves state-of-the-art performance on OTB-2013 and VOT-2015 benchmarks, while exhibits superiorly balanced accuracy and real-time response over state-of-the-art competitors.

Proceedings ArticleDOI
01 Oct 2017
TL;DR: Region Convolutional 3D Network (R-C3D) as mentioned in this paper uses a three-dimensional fully convolutional network to extract meaningful spatio-temporal features to capture activities, accurately localizing the start and end times of each activity.
Abstract: We address the problem of activity detection in continuous, untrimmed video streams. This is a difficult task that requires extracting meaningful spatio-temporal features to capture activities, accurately localizing the start and end times of each activity. We introduce a new model, Region Convolutional 3D Network (R-C3D), which encodes the video streams using a three-dimensional fully convolutional network, then generates candidate temporal regions containing activities, and finally classifies selected regions into specific activities. Computation is saved due to the sharing of convolutional features between the proposal and the classification pipelines. The entire model is trained end-to-end with jointly optimized localization and classification losses. R-C3D is faster than existing methods (569 frames per second on a single Titan X Maxwell GPU) and achieves state-of-the-art results on THUMOS’14. We further demonstrate that our model is a general activity detection framework that does not rely on assumptions about particular dataset properties by evaluating our approach on ActivityNet and Charades. Our code is available at http://ai.bu.edu/r-c3d/

Proceedings ArticleDOI
01 Oct 2017
TL;DR: Amulet is presented, a generic aggregating multi-level convolutional feature framework for salient object detection that provides accurate salient object labeling and performs favorably against state-of-the-art approaches in terms of near all compared evaluation metrics.
Abstract: Fully convolutional neural networks (FCNs) have shown outstanding performance in many dense labeling problems. One key pillar of these successes is mining relevant information from features in convolutional layers. However, how to better aggregate multi-level convolutional feature maps for salient object detection is underexplored. In this work, we present Amulet, a generic aggregating multi-level convolutional feature framework for salient object detection. Our framework first integrates multi-level feature maps into multiple resolutions, which simultaneously incorporate coarse semantics and fine details. Then it adaptively learns to combine these feature maps at each resolution and predict saliency maps with the combined features. Finally, the predicted results are efficiently fused to generate the final saliency map. In addition, to achieve accurate boundary inference and semantic enhancement, edge-aware feature maps in low-level layers and the predicted results of low resolution features are recursively embedded into the learning framework. By aggregating multi-level convolutional features in this efficient and flexible manner, the proposed saliency model provides accurate salient object labeling. Comprehensive experiments demonstrate that our method performs favorably against state-of-the-art approaches in terms of near all compared evaluation metrics.

Proceedings ArticleDOI
01 Jul 2017
TL;DR: A new deep learning framework for person search that jointly handles pedestrian detection and person re-identification in a single convolutional neural network and converges much faster and better than the conventional Softmax loss.
Abstract: Existing person re-identification benchmarks and methods mainly focus on matching cropped pedestrian images between queries and candidates. However, it is different from real-world scenarios where the annotations of pedestrian bounding boxes are unavailable and the target person needs to be searched from a gallery of whole scene images. To close the gap, we propose a new deep learning framework for person search. Instead of breaking it down into two separate tasks—pedestrian detection and person re-identification, we jointly handle both aspects in a single convolutional neural network. An Online Instance Matching (OIM) loss function is proposed to train the network effectively, which is scalable to datasets with numerous identities. To validate our approach, we collect and annotate a large-scale benchmark dataset for person search. It contains 18,184 images, 8,432 identities, and 96,143 pedestrian bounding boxes. Experiments show that our framework outperforms other separate approaches, and the proposed OIM loss function converges much faster and better than the conventional Softmax loss.

Proceedings ArticleDOI
01 Oct 2017
TL;DR: In this paper, the structural similarity measure (Structure-measure) is proposed to evaluate non-binary foreground maps, which simultaneously evaluates region-aware and object-aware structural similarity between a saliency map and a ground-truth map.
Abstract: Foreground map evaluation is crucial for gauging the progress of object segmentation algorithms, in particular in the field of salient object detection where the purpose is to accurately detect and segment the most salient object in a scene. Several widely-used measures such as Area Under the Curve (AUC), Average Precision (AP) and the recently proposed F W/B (Fbw) have been used to evaluate the similarity between a non-binary saliency map (SM) and a ground-truth (GT) map. These measures are based on pixel-wise errors and often ignore the structural similarities. Behavioral vision studies, however, have shown that the human visual system is highly sensitive to structures in scenes. Here, we propose a novel, efficient, and easy to calculate measure known as structural similarity measure (Structure-measure) to evaluate non-binary foreground maps. Our new measure simultaneously evaluates region-aware and object-aware structural similarity between a SM and a GT map. We demonstrate superiority of our measure over existing ones using 5 meta-measures on 5 benchmark datasets.

Proceedings Article
04 Dec 2017
TL;DR: This work proposes a new framework to learn compact and fast object detection networks with improved accuracy using knowledge distillation and hint learning and shows consistent improvement in accuracy-speed trade-offs for modern multi-class detection models.
Abstract: Despite significant accuracy improvement in convolutional neural networks (CNN) based object detectors, they often require prohibitive runtimes to process an image for real-time applications. State-of-the-art models often use very deep networks with a large number of floating point operations. Efforts such as model compression learn compact models with fewer number of parameters, but with much reduced accuracy. In this work, we propose a new framework to learn compact and fast object detection networks with improved accuracy using knowledge distillation [20] and hint learning [34]. Although knowledge distillation has demonstrated excellent improvements for simpler classification setups, the complexity of detection poses new challenges in the form of regression, region proposals and less voluminous labels. We address this through several innovations such as a weighted cross-entropy loss to address class imbalance, a teacher bounded loss to handle the regression component and adaptation layers to better learn from intermediate teacher distributions. We conduct comprehensive empirical evaluation with different distillation configurations over multiple datasets including PASCAL, KITTI, ILSVRC and MS-COCO. Our results show consistent improvement in accuracy-speed trade-offs for modern multi-class detection models.