scispace - formally typeset
Search or ask a question
Topic

Oblique shock

About: Oblique shock is a research topic. Over the lifetime, 6551 publications have been published within this topic receiving 119823 citations.


Papers
More filters
Book
01 Jan 1997
TL;DR: The seminal book on gas turbine technology has been a bestseller since it was first published as mentioned in this paper, which includes a comprehensive set of software programs that complement the text with problems and design analyses.
Abstract: This seminal book on gas turbine technology has been a bestseller since it was first published. It now includes a comprehensive set of software programs that complement the text with problems and design analyses. Software topics included are atmosphere programs, quasi-one-dimensional flow programs (ideal constant-area heat interaction, adiabatic constant-area flow with friction, rocket nozzle performance, normal shock waves, oblique shock waves), gas turbine programs (engine cycle analysis and engine off-design performance), and rocket combustion programs (Tc and PC given, He and PC given, isentropic expansion).

200 citations

Journal ArticleDOI
TL;DR: In this article, a comparison of two passive approaches for controlling the shock interaction with a turbulent boundary layer: low-profile vortex generators and a passive cavity (porous wall with a shallow cavity underneath) is presented.
Abstract: This paper describes an experimental comparison of two passive approaches for controlling the shock interaction with a turbulent boundary layer: low-profile vortex generators and a passive cavity (porous wall with a shallow cavity underneath). This investigation is the first known direct comparison of the two methods wherein the advantages and disadvantages of both are revealed. The experiments were conducted with a normal shock wave in an axisymmetric wind tunnel. The shock strength (M = 1.56-1.65) was of sufficient magnitude to induce a large separation bubble, thus causing substantial boundary-layer losses. The low-profile vortex generators were found to significantly suppress the shock-induced separation and improve the boundary-layer characteristics downstream of the shock. However, the suppression of the separation bubble decreased the extent of the low total pressure loss region associated with the lambda foot shock system which results in a lower mass-averaged total pressure downstream of the shock. The passive cavity substantially reduced the total pressure loss through the shock system (and thus wave drag) by causing a more isentropic compression over a larger lateral extent. However, the boundary-layer losses downstream of the shock were significantly increased.

200 citations

Journal ArticleDOI
TL;DR: In this article, the experimental requirements for a reliable and unbiased measurement of the particle response time τ p and length ξ p based on a single-exponent decaying law were investigated.
Abstract: The experimental approach used for the evaluation of the particle response time across a stationary shock wave is assessed by means of PIV measurements. The study focuses on the experimental requirements for a reliable and unbiased measurement of the particle response time τ p and length ξ p based on a single-exponent decaying law. A numerical simulation of the particle response experiment returns the parameters governing the measurement: namely the normalized spatial and temporal resolution, shock strength, and digital resolution. Representing the velocity decay in logarithmic coordinates it is shown that measurements performed with laser pulse separation time up to τ p and interrogation window up to ξ p still yield unbiased results for the particle response. A set of experiments on the particle response across a planar oblique shock wave was conducted to verify the results from the numerical assessment. Liquid droplets of DEHS and solid tracer particles of silicon and titanium dioxide with different primary crystal size are compared. The resulting temporal response ranges from 2 to 3 μs, corresponding to values commonly reported in literature, to almost 0.3 μs when particles are properly dehydrated and a filter is applied before injection into the wind tunnel. It is the first experimental evidence of particle tracers with a measured response time lower than 0.4 μs. The same procedure is applied to attempt the measurement of individual particle tracers by particle tracking velocimetry to estimate the spread in the distribution of tracer time response. The latter analysis is limited by the particle image tracking precision error, which biases the results introducing a wider broadening of the particle velocity distribution.

191 citations

Journal ArticleDOI
TL;DR: In this article, a parametric computational study of energy deposition upstream of generic two-dimensional and axisymmetric blunt bodies at Mach numbers of 6.5 and 10 is performed utilizing a full Navier-Stokes computational fluid dynamics code.
Abstract: A parametric computational study of energy deposition upstream of generic two-dimensional and axisymmetric blunt bodies at Mach numbers of 6.5 and 10 is performed utilizing a full Navier-Stokes computational fluid dynamics code. The energy deposition modifies the upstream shock structure and results in large wave drag reduction and very high power effectiveness. Specifically, drag is reduced to values as low as 30% of baseline drag (no energy deposited into flow) and power effectiveness ratios (ratio of thrust power saved to power deposited into the flow) of up to 33 are obtained. The fluid dynamic and thermodynamic bases of the observed drag reduction are examined

189 citations


Network Information
Related Topics (5)
Boundary layer
64.9K papers, 1.4M citations
87% related
Turbulence
112.1K papers, 2.7M citations
86% related
Reynolds number
68.4K papers, 1.6M citations
86% related
Laminar flow
56K papers, 1.2M citations
83% related
Vortex
72.3K papers, 1.3M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202369
2022142
2021106
202090
201992
2018102