scispace - formally typeset
Search or ask a question
Topic

Oblique shock

About: Oblique shock is a research topic. Over the lifetime, 6551 publications have been published within this topic receiving 119823 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors used time-resolved stereo particle-image velocimetry (TR-SPIV) and unsteady pressure measurements of transonic flow in a supercritical DRA-2303 airfoil to analyze the origin and nature of the dynamic shock wave-boundary layer interaction.
Abstract: Time-resolved stereo particle-image velocimetry (TR-SPIV) and unsteady pressure measurements are used to analyze the unsteady flow over a supercritical DRA-2303 airfoil in transonic flow. The dynamic shock wave–boundary layer interaction is one of the most essential features of this unsteady flow causing a distinct oscillation of the flow field. Results from wind-tunnel experiments with a variation of the freestream Mach number at Reynolds numbers ranging from 2.55 to 2.79 × 106 are analyzed regarding the origin and nature of the unsteady shock–boundary layer interaction. Therefore, the TR-SPIV results are analyzed for three buffet flows. One flow exhibits a sinusoidal streamwise oscillation of the shock wave only due to an acoustic feedback loop formed by the shock wave and the trailing-edge noise. The other two buffet flows have been intentionally influenced by an artificial acoustic source installed downstream of the test section to investigate the behavior of the interaction to upstream-propagating disturbances generated by a defined source of noise. The results show that such upstream-propagating disturbances could be identified to be responsible for the upstream displacement of the shock wave and that the feedback loop is formed by a pulsating separation of the boundary layer dependent on the shock position and the sound pressure level at the shock position. Thereby, the pulsation of the separation could be determined to be a reaction to the shock motion and not vice versa.

42 citations

Journal ArticleDOI
TL;DR: In this article, the authors reported simulations of diffusive particle acceleration in oblique magnetohydrodynamical (MHD) shocks and compared results of time dependent numerical simulations using their technique with Monte Carlo simulations by Ellison, Baring and Jones 1995 and with observations from the Ulysses spacecraft of oblique interplanetary shocks discussed by Baring et al.
Abstract: We report simulations of diffusive particle acceleration in oblique magnetohydrodynamical (MHD) shocks. These calculations are based on extension to oblique shocks of a numerical model for ``thermal leakage'' injection of particles at low energy into the cosmic-ray population. That technique, incorporated into a fully dynamical diffusion-convection formalism, was recently introduced for parallel shocks by Kang \& Jones (1995). Here, we have compared results of time dependent numerical simulations using our technique with Monte Carlo simulations by Ellison, Baring \& Jones 1995 and with {\it in situ} observations from the Ulysses spacecraft of oblique interplanetary shocks discussed by Baring \etal (1995). Through the success of these comparisons we have demonstrated that our {diffusion-convection} method and injection techniques provide a practical tool to capture essential physics of the injection process and particle acceleration at oblique MHD shocks. In addition to the diffusion-convection simulations, we have included time dependent two-fluid simulations for a couple of the shocks to demonstrate the basic validity of that formalism in the oblique shock context. Using simple models for the two-fluid closure parameters based on test-particle considerations, we find good agreement with the dynamical properties of the more detailed diffusion-convection results. We emphasize, however, that such two-fluid results can be sensitive to the properties of these closure parameters when the flows are not truly steady. Furthermore, we emphasize through example how the validity of the two-fluid formalism does not necessarily mean that {\it steady-state} two-fluid models provide a reliable tool for predicting the efficiency of particle acceleration in real shocks.

42 citations

Journal ArticleDOI
TL;DR: In this paper, the authors examined the dynamics of the perpendicular shock front under various plasma parameters by using particle-in-cell numerical simulation and found that the self-reformation process can be modified in high Mach number regime.
Abstract: [1] The dynamics of the perpendicular shock front is examined under various plasma parameters by using particle-in-cell numerical simulation. As widely accepted, above the critical Mach number (∼3) the front of (quasi-)perpendicular shocks show nonstationary behavior due to the shock self-reformation. In much higher Mach number regime (MA > 20), we find that dynamics of the shock front self-reformation can be modified. Nonlinear evolution of microinstabilities in the shock transition region results turbulent profiles in a microscopic view (≤c/ωpe), while, from a macroscopic view (>several c/ωpe) because of rapid, strong thermalization in the shock transition region, the localized accumulation of the plasma due to ion dynamics is smeared out in both of the velocity phase space and real space. As a result, the shock self-reformation is realized within a reduced time and space. We can say there is a possibility that rapid, strong dissipation helps to stabilize the macroscopic shock front dynamics; the shock self-reformation still persists, though. The strong thermalization is caused by the nonlinear evolution of two-stream instability between the electron and the reflected/incident ion components and following ion-acoustic instability. We think that the modification of the shock self-reformation process observed in high Mach number regime indicates an important role of electron kinetics and heating in the macroscopic shock front behavior.

42 citations

DissertationDOI
01 Jan 1991
TL;DR: In this article, a parametric study of a class of contoured wall fuel injectors is presented, aimed at enabling shock-enhanced mixing for the supersonic combustion ramjet engines currently envisioned for applications on hypersonic vehicles.
Abstract: A parametric study of a class of contoured wall fuel injectors is presented. The injectors were aimed at enabling shock-enhanced mixing for the supersonic combustion ramjet engines currently envisioned for applications on hypersonic vehicles. Short combustor residence time, a requirement for fuel injection parallel to the freestream, and strong sensitivity of overall vehicle performance to combustion efficiency motivated the investigation. Several salient parametric dependencies were investigated. Injector performance was evaluated in terms of mixing, losses, jet penetration and heating considerations. A large portion of the research involved a series of tests conducted at the NASA Langley High - Reynolds Number Mach 6 Wind-Tunnel. Helium was used as an injectant gas to simulate hydrogen fuel. The parameters investigated include injector spacing, boundary layer height, and injectant to freestream pressure and velocity ratios. Conclusions concerning injector performance and parameter dependencies are supported by extensive three-dimensional flow field surveys as well as data from a variety of flow visualization techniques including Rayleigh scattering, Schlieren, spark-shadowgraph, and surface oil flow. As an adjunct to these experiments, a three-dimensional Navier-Stokes solver was used to conduct a parametric study which closely tracked the experimental effort. The results of these investigations strongly complemented the experimental work. Use of the code also allowed research beyond the fairly rigid bounds of the experimental test matrix. These studies included both basic investigations of shock-enhanced mixing on generic injectors, and applied efforts such as combining film-cooling with the contoured wall injectors. Location of an oblique shock at the base of the injection plane was found to be a loss-effective method for enhancing hypervelocity mixing through baroclinic generation of vorticity and subsequent convection and diffusion. Injector performance was strongly dependent on the displacement effect of the hypersonic boundary layer which acted to modify the effective wall geometry. Strong dependence on injectant to freestream pressure ratio was also displayed. Mixing enhancement related to interaction of the unsteady component of the boundary layer with both steady and unsteady components of the flow field was found to be secondary, as were effects due to variation in mean shear between the injectant and the freestream in the exit plane.

42 citations


Network Information
Related Topics (5)
Boundary layer
64.9K papers, 1.4M citations
87% related
Turbulence
112.1K papers, 2.7M citations
86% related
Reynolds number
68.4K papers, 1.6M citations
86% related
Laminar flow
56K papers, 1.2M citations
83% related
Vortex
72.3K papers, 1.3M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202369
2022142
2021106
202090
201992
2018102