scispace - formally typeset
Search or ask a question
Topic

Oblique shock

About: Oblique shock is a research topic. Over the lifetime, 6551 publications have been published within this topic receiving 119823 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the rate of damping of perturbations on a plane shock wave reflected from a perturbed flat wall was measured in a shock tube and compared with a modified form of a linearized theory due to Zaidel (1960).
Abstract: The rate of damping of perturbations on a shock wave reflected from a perturbed flat wall was measured in a shock tube. Incident shock wave Mach numbers of 1·45 and 1·09 in air together with sinusoidal and Gaussian wall perturbations were employed. These measurements were compared with a modified form of a linearized theory due to Zaidel (1960). The linearization was performed about the basic solution of a plane shock wave reflected normally from a flat wall.The rate of decay and the frequency and phase of oscillations agreed very well with the theoretical predictions; the amplitudes of the oscillations were some-what larger than predicted. The reflected shock shape was initially in good agreement with theory, but higher frequency perturbations on the reflected shock front caused deviations from the predicted shape after the shock front had travelled about one wall-wavelength away from the wall.The generally satisfactory agreement between theory and experiment supports the use of linearized analysis in predicting shock wave stability.

33 citations

01 Jan 1950
TL;DR: In this paper, the shape and location of detached shock waves on cones and spheres at Mach numbers from 2.17 to 1.81 were given, and the data were correlated to obtain equations that describe the shock waves.
Abstract: : Accurate experimental data are given on the shape and the location of detached shock waves on cones and spheres at Mach numbers from 2.17 to 1.81. The data are correlated to obtain equations that describe the shock waves. This knowledge of the shock waves should be useful in calculations of the pressure distribution and the pressure drag of the fore part of cones and spheres. The experimental data on shock waves are compared with theory.

33 citations

Journal ArticleDOI
TL;DR: In this paper, a particle-in-cell code is used to examine the kinetic properties of pickup ions at the heliospheric termination shock and a run is presented with a 60% relative pickup ion density to investigate a pickup ion dominated shock.
Abstract: [1] A particle-in-cell code is used to examine kinetic properties of pickup ions at the heliospheric termination shock. The code treats the pickup ions self-consistently as a third component. The simulations are one-dimensional in spatial variations. We use a relative pickup ion density of 30% and two different values of the magnetic field–shock normal angle: ΘBn = 90° and ΘBn = 87°. The oblique shock is chosen in order to allow for wave vectors parallel to the magnetic field due to instabilities in the foot. In addition, a run is presented with a 60% relative pickup ion density to investigate a pickup ion–dominated shock. Upstream of the ramp is an extended foot due to reflected pickup ions. In this foot the magnetic field continuously increases, and the bulk speed of the pickup ions as well as the bulk speed of the solar wind ions decrease and reach at the magnetic field ramp the downstream value. The positive bulk velocity of the pickup ions in the extended foot perpendicular to the magnetic field and to the shock normal causes an electric field in the shock normal direction. This leads to a large increase of the shock potential well upstream of the magnetic field ramp. The maximum value of the potential is ∼0.35 the shock ram energy and is by a factor 5 larger than expected for a weak shock without pickup ions. Pickup ion reflection at the shock is almost 100%; part of the pickup ions are essentially specularly reflected by the magnetic field force term of the Lorentz force in the overshoot and part of the pickup ions are reflected in the extended foot due to a combination of the magnetic force term and the cross-shock potential. In the 30% pickup ion case, about 90% of the total thermal energy gain in the shock is gained by pickup ions, a little under 10% by the solar wind ions. The thermal energy gain by pickup ions increases as the pickup ion relative density increases. The pickup ion temperature increases continuously from the upstream edge of the extended foot to the shock ramp and then stays constant through the overshoot and downstream.

33 citations

ReportDOI
01 Jan 1983
TL;DR: In this paper, an optical technique was used to determine where the rarefaction from the back surface of the impactor overtook the shock wave induced in a step wedge target.
Abstract: Rarefaction waves were produced by impacting a target with a thin plate. An optical technique was used to determine where the rarefaction from the back surface of the impactor overtook the shock wave induced in a step wedge target. Bromoform was placed on the front surface. When the shock reached the liquid it radiated steadily until the rarefaction from the impactor overtakes it. The times when this occurred were used to determine where the rarefaction just overtook the shock in the target, and thus the sound velocity. The leading edge of this rarefaction wave travels at longitudinal sound velocity in solids. This velocity increases smoothly with pressure until shock heating causes the material to melt. The data indicate that melting on the Hugoniot of 2024 Al begins at about 125 GPa and is completed at 150 GPa.

33 citations

Journal ArticleDOI
TL;DR: In this article, the cowl shock/boundary layer interaction under the interference of the expansion waves is investigated by both theoretical analysis method and computational method in both theoretical and computational methods.
Abstract: The cowl shock/boundary layer interaction is of great importance to the performance and operability of hypersonic inlets. However, it is usually affected by the expansion waves originated from the convex corner of the ramp surface (often called the shoulder), making the commonly used separation prediction relation unreliable. Therefore, the cowl shock/boundary layer interaction under the interference of the expansion waves is investigated by both theoretical analysis method and computational method in this paper. The results show that the expansion waves bring significant influence on the cowl shock/boundary layer interaction and four kinds of interaction processes exist when their relative position changes. When different interaction processes dominates the flowfield, the expansion waves may bring positive or negative effects on the shock/boundary layer interaction. In particular, while the cowl shock impinges near the shoulder, the interaction processes of shock–shock–expansion wave and shock–expansion ...

33 citations


Network Information
Related Topics (5)
Boundary layer
64.9K papers, 1.4M citations
87% related
Turbulence
112.1K papers, 2.7M citations
86% related
Reynolds number
68.4K papers, 1.6M citations
86% related
Laminar flow
56K papers, 1.2M citations
83% related
Vortex
72.3K papers, 1.3M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202369
2022142
2021106
202090
201992
2018102