scispace - formally typeset
Search or ask a question
Topic

Oblique shock

About: Oblique shock is a research topic. Over the lifetime, 6551 publications have been published within this topic receiving 119823 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a statistical analysis of particles (greater than 30 keV/charge) upstream of the earth's bow shock is conducted and it is shown that the rate of occurrence of upstream particle events is relative to the angle between the magnetic field and the shock normal at the shock intersection point as well as relative to an angle between magnetic fields and the radial direction (i.e., the sun-earth line).
Abstract: A statistical analysis of particles (greater than 30 keV/charge) upstream of the earth's bow shock is conducted and shows that the rate of occurrence of upstream particle events is relative to the angle between the magnetic field and the shock normal at the shock intersection point as well as relative to the angle between the magnetic field and the radial direction (i.e., the sun-earth line). In addition, the occurrence rate of upstream particle events relative to the bow shock connection time of a field line convected with the solar wind is presented for a model bow shock. A linear dependence of the diffusion coefficient on energy per charge is apparent with the value of the mean free path of a 30-keV proton found to be about 4 earth radii, and the free escape boundary to be at about 30 earth radii in front of the bow shock.

95 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present results from a recent gas + N-body simulation of a cluster merger, suggesting that mergers can result in long-lived, supersonic bulk flows, as well as shocks, within a few hundred kiloparsecs of the core of the dominant cluster.
Abstract: The intracluster medium (ICM) within merging clusters of galaxies is likely to be in a violent or turbulent dynamical state which may have a significant effect on the evolution of cluster radio sources. We present results from a recent gas + N-body simulation of a cluster merger, suggesting that mergers can result in long-lived, supersonic bulk flows, as well as shocks, within a few hundred kiloparsecs of the core of the dominant cluster. These results have motivated our new two-dimensional and three-dimensional simulations of jet propagation in such environments. The first set of simulations models the ISM/ICM transition as a contact discontinuity with a strong velocity shear. A supersonic (M(sub j) = 6) jet crossing this discontinuity into an ICM with a transverse, supersonic wind bends continuously, becomes 'naked' on the upwind side, and forms a distended cocoon on the downwind side. In the case of a mildly supersonic jet (M(sub j) = 3), however, a shock is driven into the ISM and ISM material is pulled along with the jet into the ICM. Instabilities excited at the ISM/ICM interface result in the jet repeatedly pinching off and reestablishing itself in a series of 'disconnection events.' The second set of simulations deals with a jet encountering a shock in the merging cluster environment. A series of relatively high-resolution two-dimensional calculations is used to confirm earlier analysis predicting that the jet will not disrupt when the jet Mach number is greater than the shock Mach number. A jet which survives the encounter with the shock will decrease in radius and disrupt shortly thereafter as a result of the growth of Kelvin-Helmholtz instabilities. We also find, in disagreement with predictions, that the jet flaring angle decreases with increasing jet density. Finally, a three-dimensional simulation of a jet crossing an oblique shock gives rise to a morphology which resembles a wide-angle tailed radio source with the jet flaring at the shock and disrupting to form a long, turbulent tail which is dragged downstream by the preshock wind.

95 citations

Journal ArticleDOI
TL;DR: The development of Doppler global velocimetry from its inception to its use as a flow diagnostics tool is described in this paper, which traces the evolution from an elementary one-component laboratory prototype, to a full three-component configuration operating in a wind tunnel at focal distances exceeding 15 m.
Abstract: The development of Doppler global velocimetry is described from its inception to its use as a flow diagnostics tool. Its evolution is traced from an elementary one-component laboratory prototype, to a full three-component configuration operating in a wind tunnel at focal distances exceeding 15 m. As part of the developmental process, several wind tunnel flow field investigations were conducted. These included supersonic flow measurements about an oblique shock, subsonic and supersonic measurements of the vortex flow above a delta wing, and three-component measurements of a high-speed jet.

95 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of wake and shock waves shed by the nozzle guide vane row on the flow over a downstream turbine rotor have been simulated in a transient cascade tunnel, where both wakes and shocks are shown to cause transient turbulent patches to develop in an otherwise laminar (suction-surface) boundary layer.
Abstract: The unsteady effects of shock waves and wakes shed by the nozzle guide vane row on the flow over a downstream turbine rotor have been simulated in a transient cascade tunnel. At conditions representative of engine flow, both wakes and shock waves are shown to cause transient turbulent patches to develop in an otherwise laminar (suction-surface) boundary layer. The simulation technique employed, coupled with very high-frequency heat transfer and pressure measurements, and flow visualization, allowed the transition initiated by isolated wakes and shock waves to be studied in detail. On the profile tested, the comparatively weak shock waves considered do not produce significant effects by direct shock-boundary layer interaction. Instead, the shock initiates a leading edge separation, which subsequently collapses, leaving a turbulent patch that is convected downstream. Effects of combined wake- and shock wave-passing at high frequency are also reported.

94 citations

Journal ArticleDOI
TL;DR: In this article, the structure of the low-beta quasi-perpendicular shock was examined in view of ISEE 1 and 2 magnetic field measurements, and it was shown that the strength of the overshoots increases as the ratio of the Mach number to the first critical Mach number increases.
Abstract: The structure of the low-beta quasi-perpendicular shock is examined in view of ISEE 1 and 2 magnetic field measurements. An analysis of shock overshoots indicates that the strength of the overshoots of low-beta, quasi-perpendicular shocks increases as the ratio of the Mach number to the first critical Mach number increases. Wave analysis indicates that the power of the downstream waves also increases as a function of this ratio of criticality. The thickness of the shock is a factor of 1-2 times greater than a precursor wavelength, countering the conjecture that the shock is the last amplified cycle of the precursor wave.

94 citations


Network Information
Related Topics (5)
Boundary layer
64.9K papers, 1.4M citations
87% related
Turbulence
112.1K papers, 2.7M citations
86% related
Reynolds number
68.4K papers, 1.6M citations
86% related
Laminar flow
56K papers, 1.2M citations
83% related
Vortex
72.3K papers, 1.3M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202369
2022142
2021106
202090
201992
2018102