scispace - formally typeset
Search or ask a question
Topic

Oblique shock

About: Oblique shock is a research topic. Over the lifetime, 6551 publications have been published within this topic receiving 119823 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a simple but effective technique is proposed to generate cylindrical converging shock waves, where the shock dynamics are employed to design a curved wall profile of the test section in a shock tube.
Abstract: A simple but effective technique is proposed to generate cylindrical converging shock waves. The shock dynamics is employed to design a curved wall profile of the test section in a shock tube. When a planar shock wave propagates forward along the curved wall, the disturbances produced by the curved wall would continuously propagate along the shock surface and bend the shock wave. As an example, the wall profile for an incident shock Mach number of M0=1.2 and a converging angle of 15° is tested numerically and experimentally. Both numerical and experimental results show a perfect circular shock front, which validates our method.

67 citations

Journal ArticleDOI
TL;DR: In this paper, a transonic channel flow over a bump is investigated, where a shock wave causes the separation of the boundary layer in the form of a recirculating bubble downstream of the shock foot.
Abstract: A transonic interaction between a shock wave and a turbulent boundary layer is experimentally and theoretically investigated. The configuration is a transonic channel flow over a bump, where a shock wave causes the separation of the boundary layer in the form of a recirculating bubble downstream of the shock foot. Different experimental techniques allow for the identification of the main unsteadiness features. As recognised in similar shock-wave/boundary-layer interactions, the flow field exhibits two distinct characteristic frequencies, whose origins are still controversial: a low-frequency motion which primarily affects the shock wave; and medium-frequency perturbations localised in the shear layer. A Fourier analysis of a series of Schlieren snapshots is performed to precisely characterise the structure of the perturbations at low- and medium-frequencies. Then, the Reynolds-averaged Navier–Stokes (RANS) equations closed with a Spalart–Allmaras turbulence model are solved to obtain a mean flow, which favourably compares with the experimental results. A global stability analysis based on the linearization of the full RANS equations is then performed. The eigenvalues of the Jacobian operator are all damped, indicating that the interaction dynamic cannot be explained by the existence of unstable global modes. The input/output behaviour of the flow is then analysed by performing a singular-value decomposition of the Resolvent operator; pseudo-resonances of the flow may be identified and optimal forcings/responses determined as a function of frequency. It is found that the flow strongly amplifies both medium-frequency perturbations, generating fluctuations in the mixing layer, and low-frequency perturbations, affecting the shock wave. The structure of the optimal perturbations and the preferred frequencies agree with the experimental observations.

67 citations

Journal ArticleDOI
01 Jan 2009
TL;DR: In this paper, the instability of oblique shock wave (OSW) induced combustion is examined for a wedge with a flow turning angle greater than the maximum attach angle of the oblique detonation wave (ODW), where archival results rarely exist for this case in previous literatures.
Abstract: The instability of oblique shock wave (OSW) induced combustion is examined for a wedge with a flow turning angle greater than the maximum attach angle of the oblique detonation wave (ODW), where archival results rarely exist for this case in previous literatures. Numerical simulations were carried out for wedges of different length scales to account for the ratio of the chemical and fluid dynamic time scales. The results reveal three different regimes of combustion. (1) No ignition or decoupled combustion was observed if a fluid dynamic time is shorter than a chemical time behind an OSW. (2) Oscillatory combustion was observed behind an OSW if a fluid dynamic time is longer than a chemical time behind an OSW and the fluid dynamic time is shorter than the chemical time behind a normal shock wave (NSW) at the same Mach number. (3) Detached bow shock-induced combustion (or detached overdriven detonation wave) was observed if a fluid dynamic time is longer than a chemical time behind a NSW. Since no ignition or decoupled combustion occurs as a very slow reaction and the detached wave occurs as an infinitely fast reaction, the finite rate chemistry is considered to be the key for the oscillating combustion induced by an OSW over a wedge of a finite length with a flow turning angle greater than the maximum attach angle for an ODW. Since this case has not been previously reported, grid independency was tested intensively to account for the interaction between the shock and reaction waves and to determine the critical time scale where the oscillating combustion can be observed.

67 citations

Journal ArticleDOI
TL;DR: In this article, the behavior of strictly perpendicular shocks in supercritical regime is analyzed with the help of both two-dimensional (2D) hybrid and full particle electromagnetic simulations, and a parametric study shows that these whistler waves are emitted in 2-D perpendicular shocks and, simultaneously, the self-reformation of the shock front associated with reflected ions disappears; the 2-dimensional shock front is almost quasi-stationary.
Abstract: New behavior of strictly perpendicular shocks in supercritical regime is analyzed with the help of both two-dimensional (2-D) hybrid and full particle electromagnetic simulations. Surprisingly, in both simulation cases, the shock front region appears to be dominated by emission of coherent large amplitude whistler waves for some plasma conditions and shock regimes. These whistler waves are oblique with respect to the shock normal as well as to the upstream magnetic field and are phase-standing in the shock rest frame. A parametric study shows that these whistler waves are emitted in 2-D perpendicular shocks and, simultaneously, the self-reformation of the shock front associated with reflected ions disappears; the 2-D shock front is almost quasi-stationary. In contrast, both corresponding one-dimensional (1-D) hybrid and full particle simulations performed in similar plasma and Mach regime conditions show that the self-reformation takes place for 1-D perpendicular shock. These results indicate that the emission of these 2-D whistler waves can inhibit the self-reformation in 2-D shocks. Possible generating mechanisms of these waves emissions and comparison with previous works are discussed.

67 citations

Journal ArticleDOI
TL;DR: In this paper, experiments based on laser Doppler anemometry (LDA) were performed to investigate shock/boundary layer interaction in the presence of separation, using an unswept, 2-d flat plate/24 degree ramp configuration.
Abstract: Experiments based on laser Doppler anemometry (LDA) were performed to investigate shock/boundary layer interaction in the presence of separation. Applicability and limits of this experimental method are briefly discussed. Experiments are concentrated on flow conditions given by M = 2.5/Re = 29⋅10 m, interaction is generated by an unswept, 2-d flat plate/24 degree ramp configuration. Time averaged locations of separation, reattachment and the mean shock position are determined by measurements in closest proximity to the surfaces. Results are compared with data from pressure measurements given in literature.

67 citations


Network Information
Related Topics (5)
Boundary layer
64.9K papers, 1.4M citations
87% related
Turbulence
112.1K papers, 2.7M citations
86% related
Reynolds number
68.4K papers, 1.6M citations
86% related
Laminar flow
56K papers, 1.2M citations
83% related
Vortex
72.3K papers, 1.3M citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202369
2022142
2021106
202090
201992
2018102