scispace - formally typeset
Search or ask a question
Topic

Obstacle

About: Obstacle is a research topic. Over the lifetime, 9517 publications have been published within this topic receiving 94760 citations. The topic is also known as: impediment & barrier.


Papers
More filters
Journal ArticleDOI
TL;DR: The main considerations for the onboard multi-sensor configuration of intelligent ground vehicles in the off-road environments are summarized, providing users with a guideline for selecting sensors based on their performance requirements and application environments.
Abstract: With the development of sensor fusion technologies, there has been a lot of research on intelligent ground vehicles, where obstacle detection is one of the key aspects of vehicle driving. Obstacle detection is a complicated task, which involves the diversity of obstacles, sensor characteristics, and environmental conditions. While the on-road driver assistance system or autonomous driving system has been well researched, the methods developed for the structured road of city scenes may fail in an off-road environment because of its uncertainty and diversity. A single type of sensor finds it hard to satisfy the needs of obstacle detection because of the sensing limitations in range, signal features, and working conditions of detection, and this motivates researchers and engineers to develop multi–sensor fusion and system integration methodology. This survey aims at summarizing the main considerations for the onboard multi-sensor configuration of intelligent ground vehicles in the off-road environments and providing users with a guideline for selecting sensors based on their performance requirements and application environments. State-of-the-art multi-sensor fusion methods and system prototypes are reviewed and associated to the corresponding heterogeneous sensor configurations. Finally, emerging technologies and challenges are discussed for future study.

124 citations

Journal ArticleDOI
TL;DR: In this article, a detailed investigation of the forced convective cooling of a heated obstacle mounted upon a channel wall is presented, where the Navier-Stokes equations are used to characterize the flow field surrounding the conductive obstacle.

124 citations

Journal ArticleDOI
TL;DR: Simulation results show that the contingency planner allows for a more aggressive driving style than planning a single path without compromising the overall safety of the robot.
Abstract: This paper presents a novel optimization-based path planner that is capable of planning multiple contingency paths to directly account for uncertainties in the future trajectories of dynamic obstacles. This planner addresses the particular problem of probabilistic collision avoidance for autonomous road vehicles that are required to safely interact, in close proximity, with other vehicles with unknown intentions. The presented path planner utilizes an efficient spline-based trajectory representation and fast but accurate collision probability bounds to simultaneously optimize multiple continuous contingency paths in real time. These collision probability bounds are efficient enough for real-time evaluation, yet accurate enough to allow for practical close-proximity driving behaviors such as passing an obstacle vehicle in an adjacent lane. An obstacle trajectory clustering algorithm is also presented to enable the path planner to scale to multiple-obstacle scenarios. Simulation results show that the contingency planner allows for a more aggressive driving style than planning a single path without compromising the overall safety of the robot.

123 citations

Journal ArticleDOI
TL;DR: This paper addresses the cooperative motion coordination of leader-follower formations of nonholonomic mobile robots, under visibility and communication constraints in known polygonal obstacle environments, and proposes a feedback control strategy under which L ensures obstacle avoidance for both robots, while F ensures visibility maintenance with L and intervehicle collision avoidance.
Abstract: Vision-based formation control of multiple agents, such as mobile robots or fully autonomous cars, has recently received great interest due to its application in robotic networks and automated highways. This paper addresses the cooperative motion coordination of leader-follower formations of nonholonomic mobile robots, under visibility and communication constraints in known polygonal obstacle environments. We initially consider the case of N = 2 agents moving in L-F fashion and propose a feedback control strategy under which L ensures obstacle avoidance for both robots, while F ensures visibility maintenance with L and intervehicle collision avoidance. The derived algorithms are based on set-theoretic methods to guarantee visibility maintenance, dipolar vector fields to maintain the formation shape, and the consideration of the formation as a tractor-trailer system to ensure obstacle avoidance. We furthermore show how the coordination and control design extends to the case of N > 2 agents, and provide simulation results, which demonstrate the efficacy of the control solutions. The proposed algorithms do not require information exchange among robots, but are instead based on information locally available to each agent. In this way, the desired tasks are executed and achieved in a decentralized manner, with each robot taking care of converging to a desired configuration, while maintaining visibility with its target.

123 citations

Patent
14 May 1997
TL;DR: In this paper, a radar-based terrain and obstacle detection device for aircraft detects obstacles and terrain ahead of the aircraft, and an alert is sounded if the obstacle or terrain is above a clearance plane positioned ahead of an aircraft.
Abstract: A radar based terrain and obstacle detection device for aircraft detects obstacles and terrain ahead of the aircraft. An alert is sounded if the obstacle or terrain is above a clearance plane positioned ahead of the aircraft.

122 citations


Network Information
Related Topics (5)
Nonlinear system
208.1K papers, 4M citations
79% related
Artificial neural network
207K papers, 4.5M citations
78% related
Fuzzy logic
151.2K papers, 2.3M citations
77% related
Software
130.5K papers, 2M citations
77% related
Optimization problem
96.4K papers, 2.1M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
20231,483
20223,389
2021407
2020817
2019873