scispace - formally typeset
Search or ask a question
Topic

Obstacle

About: Obstacle is a research topic. Over the lifetime, 9517 publications have been published within this topic receiving 94760 citations. The topic is also known as: impediment & barrier.


Papers
More filters
Journal ArticleDOI
TL;DR: Results clearly show that obstacle information provided by vision is used in a feed-forward rather than on-line control mode to regulate locomotion and information about self-motion acquired from optic flow during TravFix can be used to control velocity of locomotion.
Abstract: Spatio-temporal gaze behaviour patterns were analysed as normal participants wearing a mobile eye tracker approached and stepped over obstacles of varying height in the travel path. We examined the frequency and duration of three types of gaze fixation with respect to the participants' stepping patterns: obstacle fixation (ObsFix); travel fixation (TravFix) (when the gaze is stable and travelling at the speed of whole body) and fixation in the 4-6m region (Fix4-6). During the approach phase to the obstacle, participants fixated on the obstacle for approximately 20% of the travel time. Only Fix4-6 duration was modulated as a function of obstacle height by regulating the frequency and reflected the increased time needed for detection of the small low contrast obstacle in the travel path. Frequency of ObsFix increased significantly as a function of obstacle height and reflected visuo-motor transformation needed for limb elevation control. Participants did not fixate on the obstacle as they were stepping over, but did the planning in the steps before. TravFix duration and frequency was constant while Fix4-6 duration was higher in the step before and step over the obstacle reflecting visual search of the landing area for the lead limb following obstacle avoidance. These results clearly show that obstacle information provided by vision is used in a feed-forward rather than on-line control mode to regulate locomotion. Information about self-motion acquired from optic flow during TravFix can be used to control velocity of locomotion.

448 citations

Proceedings ArticleDOI
24 Apr 2000
TL;DR: The enhanced method, called VFH/sup */ successfully deals with situations that are problematic for purely local obstacle avoidance algorithms and verifies that a particular candidate direction guides the robot around an obstacle.
Abstract: This paper presents an enhancement to the earlier developed vector field histogram (VFH) method for mobile robot obstacle avoidance. The enhanced method, called VFH/sup */ successfully deals with situations that are problematic for purely local obstacle avoidance algorithms. The VFH/sup */ method verifies that a particular candidate direction guides the robot around an obstacle. The verification is performed by using the A/sup */ search algorithm and appropriate cost and heuristic functions.

429 citations

Journal ArticleDOI
TL;DR: The authors investigated the dynamics of steering and obstacle avoidance, with the aim of predicting routes through complex scenes, and found that route selection may emerge from on-line steering dynamics, making explicit path planning unnecessary.
Abstract: The authors investigated the dynamics of steering and obstacle avoidance, with the aim of predicting routes through complex scenes. Participants walked in a virtual environment toward a goal (Experiment 1) and around an obstacle (Experiment 2) whose initial angle and distance varied. Goals and obstacles behave as attractors and repellers of heading, respectively, whose strengths depend on distance. The observed behavior was modeled as a dynamical system in which angular acceleration is a function of goal and obstacle angle and distance. By linearly combining terms for goals and obstacles, one could predict whether participants adopt a route to the left or right of an obstacle to reach a goal (Experiment 3). Route selection may emerge from on-line steering dynamics, making explicit path planning unnecessary.

384 citations

Journal ArticleDOI
TL;DR: Although all subjects successfully avoided the riskiest form of obstacle contact, tripping, 4/24 healthy old adults stepped on an obstacle, demonstrating an increased risk for obstacle contact with age.
Abstract: Falls associated with tripping over an obstacle can be devastating to elderly individuals, yet little is known about the strategies used for stepping over obstacles by either old or young adults. The gait of gender-matched groups of 24 young and 24 old healthy adults (mean ages 22 and 71 years) was studied during a 4 m approach to and while stepping over obstacles of 0, 25, 51, or 152 mm height and in level obstacle-free walking. Optoelectronic cameras and recorders were used to record approach and obstacle crossing speeds as well as bilateral lower extremity kinematic parameters that described foot placement and movement trajectories relative to the obstacle. The results showed that age had no effect on minimum swing foot clearance (FC) over an obstacle. For the 25 mm obstacle, mean FC was 64 mm, or approximately three times that used in level gait; FC increased nonlinearly with obstacle height for all subjects. Although no age differences were found in obstacle-free gait, old adults exhibited a significantly more conservative strategy when crossing obstacles, with slower crossing speed, shorter step length, and shorter obstacle-heel strike distance. In addition, the old adults crossed the obstacle so that it was 10% further forward in their obstacle-crossing step. Although all subjects successfully avoided the riskiest form of obstacle contact, tripping, 4/24 healthy old adults stepped on an obstacle, demonstrating an increased risk for obstacle contact with age.

368 citations

Journal ArticleDOI
TL;DR: The main contribution of this paper is to lay down and explore the novel concept of inevitable collision state of a robotic system subject to sensing constraints in a partially known environment (i.e. that may contain unexpected obstacles).
Abstract: An inevitable collision state for a robotic system can be defined as a state for which, no matter what the future trajectory followed by the system is, a collision with an obstacle eventually occurs. An inevitable collision state takes into account the dynamics of both the system and the obstacles, fixed or moving. The main contribution of this paper is to lay down and explore this novel concept (and the companion concept of inevitable collision obstacle). Formal definitions of the inevitable collision states and obstacles are given. Properties fundamental for their characterization are established. This concept is very general, and can be useful both for navigation and motion planning purposes (for its own safety, a robotic system should never find itself in an inevitable collision state). To illustrate the interest of this concept, it is applied to a problem of safe motion planning for a robotic system subject to sensing constraints in a partially known environment (i.e. that may contain unexpected obst...

353 citations


Network Information
Related Topics (5)
Nonlinear system
208.1K papers, 4M citations
79% related
Artificial neural network
207K papers, 4.5M citations
78% related
Fuzzy logic
151.2K papers, 2.3M citations
77% related
Software
130.5K papers, 2M citations
77% related
Optimization problem
96.4K papers, 2.1M citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20241
20231,483
20223,389
2021407
2020817
2019873