scispace - formally typeset
Search or ask a question
Topic

Occipital lobe

About: Occipital lobe is a research topic. Over the lifetime, 3036 publications have been published within this topic receiving 149465 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This large-scale longitudinal pediatric neuroimaging study confirmed linear increases in white matter, but demonstrated nonlinear changes in cortical gray matter, with a preadolescent increase followed by a postadolescent decrease.
Abstract: Pediatric neuroimaging studies1,2,3,4,5, up to now exclusively cross sectional, identify linear decreases in cortical gray matter and increases in white matter across ages 4 to 20. In this large-scale longitudinal pediatric neuroimaging study, we confirmed linear increases in white matter, but demonstrated nonlinear changes in cortical gray matter, with a preadolescent increase followed by a postadolescent decrease. These changes in cortical gray matter were regionally specific, with developmental curves for the frontal and parietal lobe peaking at about age 12 and for the temporal lobe at about age 16, whereas cortical gray matter continued to increase in the occipital lobe through age 20.

5,140 citations

Journal ArticleDOI
TL;DR: The lateral occipital complex (LO) showed preferential activation to images of objects, compared to a wide range of texture patterns as mentioned in this paper, suggesting that objects varying widely in their recognizability (e.g., famous faces, common objects, and unfamiliar three-dimensional abstract sculptures) activated it to a similar degree.
Abstract: The stages of integration leading from local feature analysis to object recognition were explored in human visual cortex by using the technique of functional magnetic resonance imaging. Here we report evidence for object-related activation. Such activation was located at the lateral-posterior aspect of the occipital lobe, just abutting the posterior aspect of the motion-sensitive area MT/V5, in a region termed the lateral occipital complex (LO). LO showed preferential activation to images of objects, compared to a wide range of texture patterns. This activation was not caused by a global difference in the Fourier spatial frequency content of objects versus texture images, since object images produced enhanced LO activation compared to textures matched in power spectra but randomized in phase. The preferential activation to objects also could not be explained by different patterns of eye movements: similar levels of activation were observed when subjects fixated on the objects and when they scanned the objects with their eyes. Additional manipulations such as spatial frequency filtering and a 4-fold change in visual size did not affect LO activation. These results suggest that the enhanced responses to objects were not a manifestation of low-level visual processing. A striking demonstration that activity in LO is uniquely correlated to object detectability was produced by the "Lincoln" illusion, in which blurring of objects digitized into large blocks paradoxically increases their recognizability. Such blurring led to significant enhancement of LO activation. Despite the preferential activation to objects, LO did not seem to be involved in the final, "semantic," stages of the recognition process. Thus, objects varying widely in their recognizability (e.g., famous faces, common objects, and unfamiliar three-dimensional abstract sculptures) activated it to a similar degree. These results are thus evidence for an intermediate link in the chain of processing stages leading to object recognition in human visual cortex.

1,697 citations

Journal ArticleDOI
TL;DR: This work identified the borders between several retinotopically organized visual areas in the posterior occipital lobe and estimated the spatial resolution of the fMRI signal and found that signal amplitude falls to 60% at a spatial frequency of 1 cycle per 9 mm of visual cortex.
Abstract: A method of using functional magnetic resonance imaging (fMRI) to measure retinotopic organization within human cortex is described. The method is based on a visual stimulus that creates a traveling wave of neural activity within retinotopically organized visual areas. We measured the fMRI signal caused by this stimulus in visual cortex and represented the results on images of the flattened cortical sheet. We used the method to locate visual areas and to evaluate the spatial precision of fMRI. Specifically, we: (i) identified the borders between several retinotopically organized visual areas in the posterior occipital lobe; (ii) measured the function relating cortical position to visual field eccentricity within area V1; (iii) localized activity to within 1.1 mm of visual cortex; and (iv) estimated the spatial resolution of the fMRI signal and found that signal amplitude falls to 60% at a spatial frequency of 1 cycle per 9 mm of visual cortex. This spatial resolution is consistent with a linespread whose full width at half maximum spreads across 3.5 mm of visual cortex. In a series of experiments, we measured the retinotopic organization of human cortical area V1 and identified the locations of other nearby retinotopically organized visual areas. We also used the retinotopic organization of human primary visual cortex to measure the spatial localization and spatial resolution that can be obtained from functional magnetic resonance imaging (fMRI) of human visual cortex. Human primary visual cortex (area V1) is located in the

1,585 citations

Journal ArticleDOI
15 Feb 1996-Nature
TL;DR: It is found that naming pictures of animals and tools was associated with bilateral activation of the ventral temporal lobes and Broca's area, and the brain regions active during object identification are dependent, in part, on the intrinsic properties of the object presented.
Abstract: An intriguing and puzzling consequence of damage to the human brain is selective loss of knowledge about a specific category of objects. One patient may be unable to identify or name living things, whereas another may have selective difficulty identifying man-made objects. To investigate the neural correlates of this remarkable dissociation, we used positron emission tomography to map regions of the normal brain that are associated with naming animals and tools. We found that naming pictures of animals and tools was associated with bilateral activation of the ventral temporal lobes and Broca's area. In addition, naming animals selectively activated the left medial occipital lobe--a region involved in the earliest stages of visual processing. In contrast, naming tools selectively activated a left premotor area also activated by imagined hand movements, and an area in the left middle temporal gyrus also activated by the generation of action words. Thus the brain regions active during object identification are dependent, in part, on the intrinsic properties of the object presented.

1,451 citations


Network Information
Related Topics (5)
Hippocampus
34.9K papers, 1.9M citations
85% related
Prefrontal cortex
24K papers, 1.9M citations
84% related
Hippocampal formation
30.6K papers, 1.7M citations
84% related
Epilepsy
62.7K papers, 1.7M citations
84% related
Working memory
26.5K papers, 1.6M citations
83% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202363
2022117
2021103
202091
2019100
201899