scispace - formally typeset
Search or ask a question
Topic

Ocean acidification

About: Ocean acidification is a research topic. Over the lifetime, 3895 publications have been published within this topic receiving 187440 citations.


Papers
More filters
Journal ArticleDOI
29 Sep 2005-Nature
TL;DR: 13 models of the ocean–carbon cycle are used to assess calcium carbonate saturation under the IS92a ‘business-as-usual’ scenario for future emissions of anthropogenic carbon dioxide and indicate that conditions detrimental to high-latitude ecosystems could develop within decades, not centuries as suggested previously.
Abstract: Today's surface ocean is saturated with respect to calcium carbonate, but increasing atmospheric carbon dioxide concentrations are reducing ocean pH and carbonate ion concentrations, and thus the level of calcium carbonate saturation. Experimental evidence suggests that if these trends continue, key marine organisms—such as corals and some plankton—will have difficulty maintaining their external calcium carbonate skeletons. Here we use 13 models of the ocean–carbon cycle to assess calcium carbonate saturation under the IS92a 'business-as-usual' scenario for future emissions of anthropogenic carbon dioxide. In our projections, Southern Ocean surface waters will begin to become undersaturated with respect to aragonite, a metastable form of calcium carbonate, by the year 2050. By 2100, this undersaturation could extend throughout the entire Southern Ocean and into the subarctic Pacific Ocean. When live pteropods were exposed to our predicted level of undersaturation during a two-day shipboard experiment, their aragonite shells showed notable dissolution. Our findings indicate that conditions detrimental to high-latitude ecosystems could develop within decades, not centuries as suggested previously.

4,244 citations

Journal ArticleDOI
16 Jul 2004-Science
TL;DR: Using inorganic carbon measurements from an international survey effort in the 1990s and a tracer-based separation technique, the authors estimate a global oceanic anthropogenic carbon dioxide (CO2) sink for the period from 1800 to 1994 of 118 19 petagrams of carbon.
Abstract: Using inorganic carbon measurements from an international survey effort in the 1990s and a tracer-based separation technique, we estimate a global oceanic anthropogenic carbon dioxide (CO2) sink for the period from 1800 to 1994 of 118 19 petagrams of carbon. The oceanic sink accounts for48% of the total fossil-fuel and cement-manufacturing emissions, implying that the terrestrial biosphere was a net source of CO 2 to the atmosphere of about 39 28 petagrams of carbon for this period. The current fraction of total anthropogenic CO2 emissions stored in the ocean appears to be about one-third of the long-term potential. Since the beginning of the industrial period in the late 18th century, i.e., over the anthropocene (1), humankind has emitted large quantities of CO2 into the atmosphere, mainly as a result of fossil-fuel burning, but also because of land-use practices, e.g., deforestation (2). Measurements and reconstructions of the atmospheric CO2 history reveal, however, that less than half of these emissions remain in the atmosphere (3). The anthropogenic CO2 that did not accumulate in the atmosphere must have been taken up by the ocean, by the land biosphere, or by a combination of both. The relative roles of the ocean and land biosphere as sinks for anthropogenic CO2 over the anthropocene are currently not known. Although the anthropogenic CO2 budget for the past two decades, i.e., the 1980s and 1990s, has been investigated in detail (3), the estimates of the ocean sink have not been based on direct measurements of changes in the oceanic inventory of dissolved inorganic carbon (DIC). Recognizing the need to constrain the oceanic uptake, transport, and storage of anthropogenic CO 2 for the anthropocene and to provide a baseline for future estimates of oceanic CO 2 uptake, two international ocean research programs, the World Ocean Circulation Experiment (WOCE) and the Joint Global Ocean Flux Study (JGOFS), jointly conducted a comprehensive survey of inorganic carbon distributions in the global ocean in the 1990s (4). After completion of the U.S. field program in 1998, a 5-year effort was begun to compile and rigorously quality-control the U.S. and international data sets, in

3,291 citations

Journal ArticleDOI
25 Sep 2003-Nature
TL;DR: It is found that oceanic absorption of CO2 from fossil fuels may result in larger pH changes over the next several centuries than any inferred from the geological record of the past 300 million years.
Abstract: The coming centuries may see more ocean acidification than the past 300 million years. Most carbon dioxide released into the atmosphere as a result of the burning of fossil fuels will eventually be absorbed by the ocean1, with potentially adverse consequences for marine biota2,3,4. Here we quantify the changes in ocean pH that may result from this continued release of CO2 and compare these with pH changes estimated from geological and historical records. We find that oceanic absorption of CO2 from fossil fuels may result in larger pH changes over the next several centuries than any inferred from the geological record of the past 300 million years, with the possible exception of those resulting from rare, extreme events such as bolide impacts or catastrophic methane hydrate degassing.

3,060 citations

Journal ArticleDOI
TL;DR: The potential for marine organisms to adapt to increasing CO2 and broader implications for ocean ecosystems are not well known; both are high priorities for future research as mentioned in this paper, and both are only imperfect analogs to current conditions.
Abstract: Rising atmospheric carbon dioxide (CO2), primarily from human fossil fuel combustion, reduces ocean pH and causes wholesale shifts in seawater carbonate chemistry. The process of ocean acidification is well documented in field data, and the rate will accelerate over this century unless future CO2 emissions are curbed dramatically. Acidification alters seawater chemical speciation and biogeochemical cycles of many elements and compounds. One well-known effect is the lowering of calcium carbonate saturation states, which impacts shell-forming marine organisms from plankton to benthic molluscs, echinoderms, and corals. Many calcifying species exhibit reduced calcification and growth rates in laboratory experiments under high-CO2 conditions. Ocean acidification also causes an increase in carbon fixation rates in some photosynthetic organisms (both calcifying and noncalcifying). The potential for marine organisms to adapt to increasing CO2 and broader implications for ocean ecosystems are not well known; both are high priorities for future research. Although ocean pH has varied in the geological past, paleo-events may be only imperfect analogs to current conditions.

2,995 citations

Journal ArticleDOI
18 Jun 2010-Science
TL;DR: Although there is considerable uncertainty about the spatial and temporal details, climate change is clearly and fundamentally altering ocean ecosystems and will continue to create enormous challenges and costs for societies worldwide, particularly those in developing countries.
Abstract: Marine ecosystems are centrally important to the biology of the planet, yet a comprehensive understanding of how anthropogenic climate change is affecting them has been poorly developed. Recent studies indicate that rapidly rising greenhouse gas concentrations are driving ocean systems toward conditions not seen for millions of years, with an associated risk of fundamental and irreversible ecological transformation. The impacts of anthropogenic climate change so far include decreased ocean productivity, altered food web dynamics, reduced abundance of habitat-forming species, shifting species distributions, and a greater incidence of disease. Although there is considerable uncertainty about the spatial and temporal details, climate change is clearly and fundamentally altering ocean ecosystems. Further change will continue to create enormous challenges and costs for societies worldwide, particularly those in developing countries.

2,408 citations


Network Information
Related Topics (5)
Phytoplankton
24.6K papers, 930.1K citations
90% related
Benthic zone
23.1K papers, 763.9K citations
89% related
Ecosystem
25.4K papers, 1.2M citations
88% related
Sediment
48.7K papers, 1.2M citations
83% related
Climate change
99.2K papers, 3.5M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023325
2022554
2021312
2020271
2019272
2018291