scispace - formally typeset
Search or ask a question
Topic

ODMRP

About: ODMRP is a research topic. Over the lifetime, 416 publications have been published within this topic receiving 11973 citations.


Papers
More filters
Proceedings ArticleDOI
01 Aug 1999
TL;DR: Ad-hoc On-Demand Distance Vector Routing is extended to offer novel multicast capabilities which follow naturally from the way AODV establishes unicast routes.
Abstract: An ad-hoc network is the cooperative engagement of a collection of (typically wireless) mobile nodes without the required intervention of any centralized access point or existing infrastructure. To provide optimal communication ability, a routing protocol for such a dynamic self-starting network must be capable of unicast, broadcast, and multicast. In this paper we extend Ad-hoc On-Demand Distance Vector Routing (AODV), an algorithm for the operation of such ad-hoc networks, to offer novel multicast capabilities which follow naturally from the way AODV establishes unicast routes. AODV builds multicast trees as needed (i.e., on-demand) to connect multicast group members. Control of the multicast tree is distributed so that there is no single point of failure. AODV provides loop-free routes for both unicast and multicast, even while repairing broken links. We include an evaluation methodology and simulation results to validate the correct and efficient operation of the AODV algorithm.

1,245 citations

Proceedings ArticleDOI
21 Sep 1999
TL;DR: The protocol, termed ODMRP (on-demand multicast routing protocol), is a mesh-based, rather than a conventional tree-based multicast scheme and uses a forwarding group concept (only a subset of nodes forwards the multicast packets via scoped flooding).
Abstract: This paper presents a novel multicast routing protocol for mobile ad hoc wireless networks. The protocol, termed ODMRP (on-demand multicast routing protocol), is a mesh-based, rather than a conventional tree-based multicast scheme and uses a forwarding group concept (only a subset of nodes forwards the multicast packets via scoped flooding). It applies on-demand procedures to dynamically build routes and maintain multicast group membership. ODMRP is well suited for ad hoc wireless networks with mobile hosts where bandwidth is limited, topology changes frequently, and power is constrained. We evaluate ODMRP's scalability and performance via simulation.

795 citations

Journal ArticleDOI
TL;DR: On-Demand Multicast Routing Protocol (ODMRP) is well suited for ad hoc wireless networks with mobile hosts where bandwidth is limited, topology changes frequently, and power is constrained.
Abstract: An ad hoc network is a dynamically reconfigurable wireless network with no fixed infrastructure or central administration. Each host is mobile and must act as a router. Routing and multicasting protocols in ad hoc networks are faced with the challenge of delivering data to destinations through multihop routes in the presence of node movements and topology changes. This paper presents the On-Demand Multicast Routing Protocol (ODMRP) for wireless mobile and hoc networks. ODMRP is a mesh-based, rather than a conventional tree-based, multicast scheme and uses a forwarding group concept; only a subset of nodes forwards the multicast packets via scoped flooding. It applies on-demand procedures to dynamically build routes and maintain multicast group membership. ODMRP is well suited for ad hoc wireless networks with mobile hosts where bandwidth is limited, topology changes frequently, and power is constrained. We evaluate ODMRP performance with other multicast protocols proposed for ad hoc networks via extensive and detailed simulation.

779 citations

Journal ArticleDOI
TL;DR: The core-assisted mesh protocol (CAMP) is introduced for multicast routing in ad hoc networks, which generalizes the notion of core-based trees introduced for internet multicasting into multicast meshes that have much richer connectivity than trees.
Abstract: The core-assisted mesh protocol (CAMP) is introduced for multicast routing in ad hoc networks. CAMP generalizes the notion of core-based trees introduced for internet multicasting into multicast meshes that have much richer connectivity than trees. A shared multicast mesh is defined for each multicast group; the main goal of using such meshes is to maintain the connectivity of multicast groups even while network routers move frequently, CAMP consists of the maintenance of multicast meshes and loop-free packet forwarding over such meshes. Within the multicast mesh of a group, packets from any source in the group are forwarded along the reverse shortest path to the source, just as in traditional multicast protocols based on source-based trees. CAMP guarantees that within a finite time, every receiver of a multicast group has a reverse shortest path to each source of the multicast group. Multicast packets for a group are forwarded along the shortest paths front sources to receivers defined within the group's mesh. CAMP uses cores only to limit the traffic needed for a router to join a multicast group; the failure of cores does not stop packet forwarding or the process of maintaining the multicast meshes.

680 citations

Proceedings ArticleDOI
26 Mar 2000
TL;DR: This study simulates a set of representative wireless ad hoc multicast protocols and evaluates them in various network scenarios, finding the relative strengths, weaknesses, and applicability of each multicast protocol to diverse situations.
Abstract: In this paper we investigate the performance of multicast routing protocols in wireless mobile ad hoc networks. An ad hoc network is composed of mobile nodes without the presence of a wired support infrastructure. In this environment, routing/multicasting protocols are faced with the challenge of producing multihop routes under host mobility and bandwidth constraints. In recent years, a number of new multicast protocols of different styles have been proposed for ad hoc networks. However, systematic performance evaluations and comparative analysis of these protocols in a common realistic environment has not yet been performed. In this study, we simulate a set of representative wireless ad hoc multicast protocols and evaluate them in various network scenarios. The relative strengths, weaknesses, and applicability of each multicast protocol to diverse situations are studied and discussed.

554 citations

Network Information
Related Topics (5)
Wireless ad hoc network
49K papers, 1.1M citations
83% related
Key distribution in wireless sensor networks
59.2K papers, 1.2M citations
82% related
Wireless sensor network
142K papers, 2.4M citations
81% related
Wireless network
122.5K papers, 2.1M citations
80% related
Network packet
159.7K papers, 2.2M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20214
20202
20192
20187
201712
20164