Topic
OLED
About: OLED is a research topic. Over the lifetime, 20543 publications have been published within this topic receiving 397691 citations. The topic is also known as: organic light-emitting diode & organic LED.
Papers published on a yearly basis
Papers
More filters
[...]
TL;DR: In this article, a double-layer structure of organic thin films was prepared by vapor deposition, and efficient injection of holes and electrons was provided from an indium-tinoxide anode and an alloyed Mg:Ag cathode.
Abstract: A novel electroluminescent device is constructed using organic materials as the emitting elements. The diode has a double‐layer structure of organic thin films, prepared by vapor deposition. Efficient injection of holes and electrons is provided from an indium‐tin‐oxide anode and an alloyed Mg:Ag cathode. Electron‐hole recombination and green electroluminescent emission are confined near the organic interface region. High external quantum efficiency (1% photon/electron), luminous efficiency (1.5 lm/W), and brightness (>1000 cd/m2) are achievable at a driving voltage below 10 V.
12,448 citations
[...]
TL;DR: A class of metal-free organic electroluminescent molecules in which the energy gap between the singlet and triplet excited states is minimized by design, thereby promoting highly efficient spin up-conversion from non-radiative triplet states to radiative singlet states while maintaining high radiative decay rates.
Abstract: The inherent flexibility afforded by molecular design has accelerated the development of a wide variety of organic semiconductors over the past two decades. In particular, great advances have been made in the development of materials for organic light-emitting diodes (OLEDs), from early devices based on fluorescent molecules to those using phosphorescent molecules. In OLEDs, electrically injected charge carriers recombine to form singlet and triplet excitons in a 1:3 ratio; the use of phosphorescent metal-organic complexes exploits the normally non-radiative triplet excitons and so enhances the overall electroluminescence efficiency. Here we report a class of metal-free organic electroluminescent molecules in which the energy gap between the singlet and triplet excited states is minimized by design, thereby promoting highly efficient spin up-conversion from non-radiative triplet states to radiative singlet states while maintaining high radiative decay rates, of more than 10(6) decays per second. In other words, these molecules harness both singlet and triplet excitons for light emission through fluorescence decay channels, leading to an intrinsic fluorescence efficiency in excess of 90 per cent and a very high external electroluminescence efficiency, of more than 19 per cent, which is comparable to that achieved in high-efficiency phosphorescence-based OLEDs.
4,053 citations
[...]
TL;DR: An improved OLED structure which reaches fluorescent tube efficiency and focuses on reducing energetic and ohmic losses that occur during electron–photon conversion, which could make white-light OLEDs, with their soft area light and high colour-rendering qualities, the light sources of choice for the future.
Abstract: The development of white organic light-emitting diodes (OLEDs) holds great promise for the production of highly efficient large-area light sources. High internal quantum efficiencies for the conversion of electrical energy to light have been realized. Nevertheless, the overall device power efficiencies are still considerably below the 60-70 lumens per watt of fluorescent tubes, which is the current benchmark for novel light sources. Although some reports about highly power-efficient white OLEDs exist, details about structure and the measurement conditions of these structures have not been fully disclosed: the highest power efficiency reported in the scientific literature is 44 lm W(-1) (ref. 7). Here we report an improved OLED structure which reaches fluorescent tube efficiency. By combining a carefully chosen emitter layer with high-refractive-index substrates, and using a periodic outcoupling structure, we achieve a device power efficiency of 90 lm W(-1) at 1,000 candelas per square metre. This efficiency has the potential to be raised to 124 lm W(-1) if the light outcoupling can be further improved. Besides approaching internal quantum efficiency values of one, we have also focused on reducing energetic and ohmic losses that occur during electron-photon conversion. We anticipate that our results will be a starting point for further research, leading to white OLEDs having efficiencies beyond 100 lm W(-1). This could make white-light OLEDs, with their soft area light and high colour-rendering qualities, the light sources of choice for the future.
2,874 citations
[...]
TL;DR: In this article, a blue organic light-emitting diodes that harness thermally activated delayed fluorescence was realized with an external quantum efficiency of 19.5% and reduced roll-off at high luminance.
Abstract: Blue organic light-emitting diodes that harness thermally activated delayed fluorescence are realized with an external quantum efficiency of 19.5% and reduced roll-off at high luminance.
1,574 citations
[...]
TL;DR: This optoelectronic performance is achieved by inserting an insulating layer between the quantum dot layer and the oxide electron-transport layer to optimize charge balance in the device and preserve the superior emissive properties of the quantum dots.
Abstract: Solution-processed optoelectronic and electronic devices are attractive owing to the potential for low-cost fabrication of large-area devices and the compatibility with lightweight, flexible plastic substrates. Solution-processed light-emitting diodes (LEDs) using conjugated polymers or quantum dots as emitters have attracted great interest over the past two decades. However, the overall performance of solution-processed LEDs--including their efficiency, efficiency roll-off at high current densities, turn-on voltage and lifetime under operational conditions-remains inferior to that of the best vacuum-deposited organic LEDs. Here we report a solution-processed, multilayer quantum-dot-based LED with excellent performance and reproducibility. It exhibits colour-saturated deep-red emission, sub-bandgap turn-on at 1.7 volts, high external quantum efficiencies of up to 20.5 per cent, low efficiency roll-off (up to 15.1 per cent of the external quantum efficiency at 100 mA cm(-2)), and a long operational lifetime of more than 100,000 hours at 100 cd m(-2), making this device the best-performing solution-processed red LED so far, comparable to state-of-the-art vacuum-deposited organic LEDs. This optoelectronic performance is achieved by inserting an insulating layer between the quantum dot layer and the oxide electron-transport layer to optimize charge balance in the device and preserve the superior emissive properties of the quantum dots. We anticipate that our results will be a starting point for further research, leading to high-performance, all-solution-processed quantum-dot-based LEDs ideal for next-generation display and solid-state lighting technologies.
1,560 citations