scispace - formally typeset
Search or ask a question
Topic

On-off keying

About: On-off keying is a research topic. Over the lifetime, 1181 publications have been published within this topic receiving 14755 citations.


Papers
More filters
Journal ArticleDOI
10 Jan 2005
TL;DR: Differential-phase-shift keying has recently been used to reach record distances in long-haul lightwave communication systems and theoretical as well as implementation aspects of DPSK are reviewed.
Abstract: Differential-phase-shift keying (DPSK) has recently been used to reach record distances in long-haul lightwave communication systems. This paper will review theoretical, as well as implementation, aspects of DPSK, and discuss experimental results.

949 citations

Journal ArticleDOI
TL;DR: In this paper, a high-speed visible light communications link that uses a white-light light-emitting diode (LED) was described, and a data rate of 100 Mb/s was achieved using on-off keying non-return-to-zero modulation.
Abstract: This letter describes a high-speed visible light communications link that uses a white-light light-emitting diode (LED). Such devices have bandwidths of few megahertz, severely limiting the data rates of any communication system. Here, we demonstrate that by detecting only the blue component of the LED, and using a simple first-order analogue equalizer, a data rate of 100 Mb/s can be achieved using on-off keying nonreturn-to-zero modulation.

547 citations

Journal ArticleDOI
TL;DR: The main attributes of MSK, such as constant envelope, spectral efficiency, error rate performance of binary PSK, and self-synchronizing capability will all be explained on the basis of the modulation format.
Abstract: The ever increasing demand for digital transmission channels, in the radio frequency (RF) band presents a potentially serious problem of spectral congestion and is likely to cause severe adjacent and cochannel interference problems. This has, in recent years, led to the investigation of a wide variety of techniques for solving the problem of spectral congestion. Some solutions to this problem include: 1) new allocations at high frequencies; 2) better management of existing allocations; 3) the use of frequency-reuse techniques such as the use of narrow-beam antennas and dual polarizing systems; 4) the use of efficient source encoding techniques; and 5) the use of spectrally efficient modulation techniques [l]. This article will consider the last approach and analyze, in particular, a modulation scheme known as minimum shift keying (MSK). The MSK signal format will be explained and its relation to other schemes such as quadrature phase shift keying (QPSK), offset QPSK (OQPSK), and frequency shift keying (FSK) pointed out. The main attributes of MSK, such as constant envelope, spectral efficiency, error rate performance of binary PSK, and self-synchronizing capability will all be explained on the basis of the modulation format.

375 citations

Journal ArticleDOI
TL;DR: It will be shown in this paper that the optical MIMO channel is highly correlated if transmitter and receiver locations are not optimized, which results in a significant power penalty, and that aligning transmit and receive units creates nearly uncorrelated channel paths.
Abstract: In this paper, a power and bandwidth efficient pulsed modulation technique for optical wireless (OW) communication is proposed. The scheme is called optical spatial modulation (OSM). In OSM, multiple transmit units exist where only one transmitter is active at any given time instance. The spatially separated transmit units are considered as spatial constellation points. Each unique sequence of incoming data bits is mapped to one of the spatial constellation points, i.e., activating one of the transmit units. This is the fundamental concept of the spatial modulation (SM) technique. In OW communication systems, the active transmitter radiates a certain intensity level at a particular time instance. At the receiver side, the optimal SM detector is used to estimate the active transmitter index. An overall increase in the data rate by the base 2 logarithm of the number of transmit units is achieved. The optical MIMO (multiple-input multiple-output) channel and the channel impulse response are obtained via Monte Carlo simulations by applying ray tracing techniques. It will be shown in this paper that the optical MIMO channel is highly correlated if transmitter and receiver locations are not optimized, which results in a significant power penalty. The power efficiency can be improved by increasing the number of receive units to enhance receive diversity and/or by using soft and hard channel coding techniques. Conversely, it is shown that aligning transmit and receive units creates nearly uncorrelated channel paths and results in substantial enhancements in system performance even as compared to the diversity or coding gain. The resultant aligned scheme is shown to be very efficient in terms of power and bandwidth as compared to on-off keying, pulse position modulation, and pulse amplitude modulation. In this paper also, the upper bound bit error ratios of coded and uncoded OSM are analyzed. The analytical results are validated via Monte Carlo simulations and the results demonstrate a close match.

277 citations

Proceedings ArticleDOI
09 Jun 2013
TL;DR: In order to speed up date rates further, an artificial neural network (ANN) is implemented to classify the signal and correct the error induced by the matrix inversion at the receiver, allowing a gross bit rate of 1.8 Mb/s in the best case.
Abstract: This paper presents the first ever experimental demonstration of a multiple-input multiple-output (MIMO) visible light communications system employing four silicon (Si) light emitting diodes (LEDs) and four organic photodetectors (OPDs) as transmitters and receivers, respectively. The proposed link is relatively low cost and it employs the on-off keying (OOK) modulation format offering a data rate of 200 kb/s without the need for equalization, which is a significant increase compared with previous non-equalized systems. In order to speed up date rates further, we implement an artificial neural network (ANN) to classify the signal and correct the error induced by the matrix inversion at the receiver, allowing a gross bit rate of 1.8 Mb/s in the best case.

239 citations


Network Information
Related Topics (5)
Base station
85.8K papers, 1M citations
85% related
Transmission (telecommunications)
171.3K papers, 1.2M citations
83% related
Optical fiber
167K papers, 1.8M citations
83% related
Fading
55.4K papers, 1M citations
83% related
Wireless
133.4K papers, 1.9M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20238
202230
202128
202045
201945
201850