scispace - formally typeset
Search or ask a question
Topic

Online algorithm

About: Online algorithm is a research topic. Over the lifetime, 5189 publications have been published within this topic receiving 118256 citations.


Papers
More filters
Book
01 Jan 1998
TL;DR: This book discusses competitive analysis and decision making under uncertainty in the context of the k-server problem, which involves randomized algorithms in order to solve the problem of paging.
Abstract: Preface 1. Introduction to competitive analysis: the list accessing problem 2. Introduction to randomized algorithms: the list accessing problem 3. Paging: deterministic algorithms 4. Paging: randomized algorithms 5. Alternative models for paging: beyond pure competitive analysis 6. Game theoretic foundations 7. Request - answer games 8. Competitive analysis and zero-sum games 9. Metrical task systems 10. The k-server problem 11. Randomized k-server algorithms 12. Load-balancing 13. Call admission and circuit-routing 14. Search, trading and portfolio selection 15. Competitive analysis and decision making under uncertainty Appendices Bibliography Index.

2,615 citations

Journal ArticleDOI
TL;DR: This article shows that move-to-front is within a constant factor of optimum among a wide class of list maintenance rules, and analyzes the amortized complexity of LRU, showing that its efficiency differs from that of the off-line paging rule by a factor that depends on the size of fast memory.
Abstract: In this article we study the amortized efficiency of the “move-to-front” and similar rules for dynamically maintaining a linear list. Under the assumption that accessing the ith element from the front of the list takes t(i) time, we show that move-to-front is within a constant factor of optimum among a wide class of list maintenance rules. Other natural heuristics, such as the transpose and frequency count rules, do not share this property. We generalize our results to show that move-to-front is within a constant factor of optimum as long as the access cost is a convex function. We also study paging, a setting in which the access cost is not convex. The paging rule corresponding to move-to-front is the “least recently used” (LRU) replacement rule. We analyze the amortized complexity of LRU, showing that its efficiency differs from that of the off-line paging rule (Belady's MIN algorithm) by a factor that depends on the size of fast memory. No on-line paging algorithm has better amortized performance.

2,378 citations

Proceedings Article
09 Dec 2003
TL;DR: In this article, a unified view for online classification, regression, and uni-class problems is presented, which leads to a single algorithmic framework for the three problems, and the authors prove worst case loss bounds for various algorithms for both the realizable case and the non-realizable case.
Abstract: We present a unified view for online classification, regression, and uni-class problems. This view leads to a single algorithmic framework for the three problems. We prove worst case loss bounds for various algorithms for both the realizable case and the non-realizable case. A conversion of our main online algorithm to the setting of batch learning is also discussed. The end result is new algorithms and accompanying loss bounds for the hinge-loss.

1,543 citations

Book ChapterDOI
07 Oct 2012
TL;DR: A simple yet effective and efficient tracking algorithm with an appearance model based on features extracted from the multi-scale image feature space with data-independent basis that performs favorably against state-of-the-art algorithms on challenging sequences in terms of efficiency, accuracy and robustness.
Abstract: It is a challenging task to develop effective and efficient appearance models for robust object tracking due to factors such as pose variation, illumination change, occlusion, and motion blur. Existing online tracking algorithms often update models with samples from observations in recent frames. While much success has been demonstrated, numerous issues remain to be addressed. First, while these adaptive appearance models are data-dependent, there does not exist sufficient amount of data for online algorithms to learn at the outset. Second, online tracking algorithms often encounter the drift problems. As a result of self-taught learning, these mis-aligned samples are likely to be added and degrade the appearance models. In this paper, we propose a simple yet effective and efficient tracking algorithm with an appearance model based on features extracted from the multi-scale image feature space with data-independent basis. Our appearance model employs non-adaptive random projections that preserve the structure of the image feature space of objects. A very sparse measurement matrix is adopted to efficiently extract the features for the appearance model. We compress samples of foreground targets and the background using the same sparse measurement matrix. The tracking task is formulated as a binary classification via a naive Bayes classifier with online update in the compressed domain. The proposed compressive tracking algorithm runs in real-time and performs favorably against state-of-the-art algorithms on challenging sequences in terms of efficiency, accuracy and robustness.

1,538 citations

Journal ArticleDOI
TL;DR: In this paper, a low-complexity online algorithm is proposed, namely, the Lyapunov optimization-based dynamic computation offloading algorithm, which jointly decides the offloading decision, the CPU-cycle frequencies for mobile execution, and the transmit power for computing offloading.
Abstract: Mobile-edge computing (MEC) is an emerging paradigm to meet the ever-increasing computation demands from mobile applications. By offloading the computationally intensive workloads to the MEC server, the quality of computation experience, e.g., the execution latency, could be greatly improved. Nevertheless, as the on-device battery capacities are limited, computation would be interrupted when the battery energy runs out. To provide satisfactory computation performance as well as achieving green computing, it is of significant importance to seek renewable energy sources to power mobile devices via energy harvesting (EH) technologies. In this paper, we will investigate a green MEC system with EH devices and develop an effective computation offloading strategy. The execution cost , which addresses both the execution latency and task failure, is adopted as the performance metric. A low-complexity online algorithm is proposed, namely, the Lyapunov optimization-based dynamic computation offloading algorithm, which jointly decides the offloading decision, the CPU-cycle frequencies for mobile execution, and the transmit power for computation offloading. A unique advantage of this algorithm is that the decisions depend only on the current system state without requiring distribution information of the computation task request, wireless channel, and EH processes. The implementation of the algorithm only requires to solve a deterministic problem in each time slot, for which the optimal solution can be obtained either in closed form or by bisection search. Moreover, the proposed algorithm is shown to be asymptotically optimal via rigorous analysis. Sample simulation results shall be presented to corroborate the theoretical analysis as well as validate the effectiveness of the proposed algorithm.

1,385 citations


Network Information
Related Topics (5)
Graph (abstract data type)
69.9K papers, 1.2M citations
86% related
Scheduling (computing)
78.6K papers, 1.3M citations
85% related
Server
79.5K papers, 1.4M citations
85% related
Optimization problem
96.4K papers, 2.1M citations
84% related
Upper and lower bounds
56.9K papers, 1.1M citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023132
2022262
2021350
2020407
2019367
2018352